当前位置: X-MOL 学术SIAM J. Numer. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamical Low-Rank Integrator for the Linear Boltzmann Equation: Error Analysis in the Diffusion Limit
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2021-08-19 , DOI: 10.1137/20m1380788
Zhiyan Ding , Lukas Einkemmer , Qin Li

SIAM Journal on Numerical Analysis, Volume 59, Issue 4, Page 2254-2285, January 2021.
Dynamical low-rank algorithms are a class of numerical methods that compute low-rank approximations of dynamical systems. This is accomplished by projecting the dynamics onto a low-dimensional manifold and writing the solution directly in terms of the low-rank factors. The approach has been successfully applied to many types of differential equations. Recently, efficient dynamical low-rank algorithms have been proposed in [L. Einkemmer, A Low-Rank Algorithm for Weakly Compressible Flow, arXiv:1804.04561, 2018; L. Einkemmer and C. Lubich, SIAM J. Sci. Comput., 40 (2018), pp. B1330--B1360] to treat kinetic equations, including the Vlasov--Poisson and the Boltzmann equation. There it was demonstrated that the methods are able to capture the low-rank structure of the solution and significantly reduce numerical cost, while often maintaining high accuracy. However, no numerical analysis is currently available. In this paper, we perform an error analysis for a dynamical low-rank algorithm applied to the multiscale linear Boltzmann equation (a classical model in kinetic theory) to showcase the validity of the application of dynamical low-rank algorithms to kinetic theory. The equation, in its parabolic regime, is known to be rank 1 theoretically, and we will prove that the scheme can dynamically and automatically capture this low-rank structure. This work thus serves as the first mathematical error analysis for a dynamical low-rank approximation applied to a kinetic problem.


中文翻译:

线性玻尔兹曼方程的动态低阶积分器:扩散极限中的误差分析

SIAM 数值分析杂志,第 59 卷,第 4 期,第 2254-2285 页,2021 年 1 月。
动态低秩算法是一类计算动态系统低秩近似的数值方法。这是通过将动力学投影到低维流形上并直接根据低秩因子编写解决方案来实现的。该方法已成功应用于多种类型的微分方程。最近,在 [L. Einkemmer,弱可压缩流的低阶算法,arXiv:1804.04561,2018 年;L. Einkemmer 和 C. Lubich,SIAM J. Sci。Comput., 40 (2018), pp. B1330--B1360] 处理动力学方程,包括 Vlasov--Poisson 和 Boltzmann 方程。在那里证明了这些方法能够捕获解决方案的低秩结构并显着降低数值成本,同时经常保持高精度。然而,目前没有可用的数值分析。在本文中,我们对应用于多尺度线性玻尔兹曼方程(动力学理论中的经典模型)的动态低秩算法进行了误差分析,以展示动态低秩算法应用于动力学理论的有效性。该方程在其抛物线状态下,理论上已知为 1 级,我们将证明该方案可以动态自动捕获这种低级结构。因此,这项工作是对应用于动力学问题的动态低秩近似的第一个数学误差分析。我们对应用于多尺度线性玻尔兹曼方程(动力学理论中的经典模型)的动态低秩算法进行了误差分析,以展示动态低秩算法应用于动力学理论的有效性。该方程在其抛物线状态下,理论上已知为 1 级,我们将证明该方案可以动态自动捕获这种低级结构。因此,这项工作是对应用于动力学问题的动态低秩近似的第一个数学误差分析。我们对应用于多尺度线性玻尔兹曼方程(动力学理论中的经典模型)的动态低秩算法进行了误差分析,以展示动态低秩算法应用于动力学理论的有效性。该方程在其抛物线状态下,理论上已知为 1 级,我们将证明该方案可以动态自动捕获这种低级结构。因此,这项工作是对应用于动力学问题的动态低秩近似的第一个数学误差分析。我们将证明该方案可以动态自动捕获这种低秩结构。因此,这项工作是对应用于动力学问题的动态低秩近似的第一个数学误差分析。我们将证明该方案可以动态自动捕获这种低秩结构。因此,这项工作是对应用于动力学问题的动态低秩近似的第一个数学误差分析。
更新日期:2021-08-20
down
wechat
bug