当前位置: X-MOL 学术New Carbon Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Charge storage mechanisms of manganese dioxide-based supercapacitors: A review
New Carbon Materials ( IF 6.5 ) Pub Date : 2021-08-19 , DOI: 10.1016/s1872-5805(21)60082-3
Xiao-ning Tang 1 , Shao-kuan Zhu 1 , Jian Ning 1 , Xing-fu Yang 1 , Min-yi Hu 2, 3 , Jiao-jing Shao 1, 2, 3
Affiliation  

Carbon-based materials, such as carbon nanotubes, graphene and mesoporous carbons, are typical electrochemical double-layer capacitive electrodes of supercapacitors (SCs). Although these carbon electrode materials have excellent electrochemical stability, they usually have a low capacitance. Therefore, pseudocapacitive materials are often combined with them to increase the capacitance. Among these pseudocapacitive materials, manganese dioxide (MnO2) has been widely used because of its high theoretical specific capacitance, low-cost, abundance, and environmentally friendly nature. However, the use of MnO2 often produces rather low actual specific capacitances due to its poor electrical conductivity, serious phase transformation and large volumetric changes during repeated charge and discharge. To explore high-performance MnO2/carbon composite electrode materials, it is necessary to understand the charge storage mechanisms of MnO2. These are analyzed and classified into four types: surface chemisorption of cations, intercalation-deintercalation of cations, a tunnel storage mechanism and a charge compensation mechanism. Although the fourth involves pre-interaction of the cations in MnO2, the essence of all these mechanisms is the valence transition of manganese atoms between +3 and +4, and many mechanisms are usually involved in MnO2-based SCs because of the complicated charge storage process. Critical challenges and possible strategies for achieving high-performance MnO2/carbon-based SCs are discussed and prospective solutions are presented.



中文翻译:

二氧化锰基超级电容器的电荷存储机制:综述

碳基材料,如碳纳米管、石墨烯和介孔碳,是典型的超级电容器(SCs)电化学双层电容电极。尽管这些碳电极材料具有优异的电化学稳定性,但它们通常具有较低的电容。因此,常将赝电容材料与它们结合以增加电容。在这些赝电容材料中,二氧化锰(MnO 2)因其理论比电容高、成本低、资源丰富和环境友好等优点而被广泛应用。然而,使用 MnO 2由于其导电性差,相变严重,重复充放电过程中体积变化大,因此通常会产生相当低的实际比电容。为了探索高性能MnO 2 /碳复合电极材料,有必要了解MnO 2的电荷存储机制。这些被分析并分为四种类型:阳离子的表面化学吸附、阳离子的嵌入-脱嵌、隧道存储机制和电荷补偿机制。虽然第四个涉及 MnO 2 中阳离子的预相互作用,但所有这些机制的本质是锰原子在 +3 和 +4 之间的价态跃迁,通常许多机制都涉及 MnO 2基于复杂的电荷存储过程的 SC。讨论了实现高性能 MnO 2 /碳基 SCs 的关键挑战和可能的策略,并提出了前瞻性的解决方案。

更新日期:2021-08-20
down
wechat
bug