当前位置: X-MOL 学术Geochim. Cosmochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Trajectory and timescale of oxygen and clumped isotope equilibration in the dissolved carbonate system under normal and enzymatically-catalyzed conditions at 25 °C
Geochimica et Cosmochimica Acta ( IF 4.5 ) Pub Date : 2021-08-20 , DOI: 10.1016/j.gca.2021.08.014
Joji Uchikawa 1 , Sang Chen 2, 3 , John M. Eiler 3 , Jess F. Adkins 3 , Richard E. Zeebe 1
Affiliation  

The abundance of 18O isotopes and 13C-18O isotopic “clumps” (measured as δ18O and Δ47, respectively) in carbonate minerals have been used to infer mineral formation temperatures. An inherent requirement or assumption for these paleothermometers is mineral formation in isotopic equilibrium. Yet, apparent disequilibrium is not uncommon in biogenic and abiogenic carbonates formed in nature and in synthetic carbonates prepared under laboratory settings, as the dissolved carbonate pool (DCP) from which minerals precipitate is often out of δ18O and Δ47 equilibrium. For this, a complete understanding of both equilibrium and kinetics of isotopic partitioning and 13C-18O clumping in DCP is crucial. To this end, we analyzed Δ47 of inorganic BaCO3 samples from Uchikawa and Zeebe (2012) (denoted as UZ12), which were quantitatively precipitated from NaHCO3 solutions at various times over the course of isotopic equilibration at 25 °C and pHNBS of 8.9. Our data show that, although the timescales for δ18O and Δ47 equilibrium in DCP are relatively similar, their equilibration trajectories are markedly different. As opposed to a simple unidirectional and asymptotic approach toward δ18O equilibrium (first-order kinetics), Δ47 equilibration initially moves away from equilibrium and then changes its course towards equilibrium. This excess Δ47 disequilibrium is manifested as a characteristic “dip” in the Δ47 equilibration trajectory, a feature consistent with an earlier study by Staudigel and Swart (2018) (denoted as SS18). From the numerical model of SS18, the non-first-order kinetics for Δ47 equilibration can be understood as a result of the difference in the exchange rate for oxygen isotopes bound to 12C versus 13C, or an isotope effect of ∼25‰. We also developed an independent model for the Exchange and Clumping of 13C and 18O in DCP (ExClump38 model) to trace the evolution of singly- and doubly-substituted isotopic species (i.e., δ13C, δ18O and Δ47). The model suggests that the dip in the Δ47 equilibration trajectory is due largely to kinetic carbon isotope fractionation for hydration and hydroxylation of CO2. We additionally examined the BaCO3 samples prepared from NaHCO3 solutions supplemented with carbonic anhydrase (CA), an enzyme known to facilitate δ18O equilibration in DCP by catalyzing CO2 hydration (UZ12). These samples revealed that, while CA effectively shortens the time required for Δ47 equilibrium in DCP, the overall pattern and magnitude of the dip in the Δ47 equilibration trajectory remain unchanged. This suggests no additional isotope effects due to the CA enzyme within the tested CA concentrations. With the ExClump38 model, we test various physicochemical scenarios for the timescales and trajectories of isotopic equilibration in DCP and discuss their implications for the Δ47 paleothermometry.



中文翻译:

25 °C 下正常和酶催化条件下溶解碳酸盐系统中氧和团块同位素平衡的轨迹和时间尺度

碳酸盐矿物中18 O 同位素和13 C- 18 O 同位素“团块”(分别测量为 δ 18 O 和 Δ 47)的丰度已被用于推断矿物形成温度。这些古温度计的固有要求或假设是同位素平衡中的矿物形成。然而,在自然界形成的生物和非生物碳酸盐以及在实验室环境下制备的合成碳酸盐中,明显的不平衡并不少见,因为从中沉淀矿物的溶解碳酸盐池 (DCP) 通常脱离 δ 18 O 和 Δ 47平衡。为此,全面了解同位素分配的平衡和动力学以及13 C- 18 O 在 DCP 中结块是至关重要的。为此,我们分析了来自 Uchikawa 和 Zeebe (2012)(表示为 UZ12)的Δ 47无机 BaCO 3样品,这些样品是在 25 °C 和 pH NBS的同位素平衡过程中在不同时间从 NaHCO 3溶液中定量沉淀的8.9。我们的数据表明,尽管DCP 中δ 18 O 和 Δ 47平衡的时间尺度相对相似,但它们的平衡轨迹明显不同。与对 δ 18 O 平衡(一级动力学)的简单单向渐近方法相反,Δ 47平衡最初远离平衡,然后转向平衡。这种过量的 Δ 47不平衡表现为 Δ 47平衡轨迹中的特征“下降” ,这一特征与 Staudigel 和 Swart(2018 年)(表示为 SS18)的早期研究一致。从 SS18 的数值模型中,Δ 47平衡的非一级动力学可以理解为与12 C 和13 C结合的氧同位素交换率不同的结果,或~25‰的同位素效应. 我们还开发了一个独立的模型,防爆变化和荷兰国际集团的1 3 C和1DCP(ExClump38 模型)中的8 O 以追踪单取代和双取代同位素物种(δ 13 C、δ 18 O 和 Δ 47)的演化。该模型表明Δ 47平衡轨迹的下降主要是由于CO 2 的水合和羟基化的动力学碳同位素分馏。我们另外检查了由补充有碳酸酐酶 (CA) 的NaHCO 3溶液制备的 BaCO 3样品,碳酸酐酶 (CA) 是一种已知通过催化 CO 2促进DCP 中δ 18 O 平衡的酶水合作用(UZ12)。这些样品表明,虽然 CA 有效地缩短了DCP 中Δ 47平衡所需的时间,但 Δ 47平衡轨迹中下降的整体模式和幅度保持不变。这表明在测试的 CA 浓度中没有由于 CA 酶而产生的额外同位素效应。使用 ExClump38 模型,我们测试了 DCP 中同位素平衡的时间尺度和轨迹的各种物理化学情景,并讨论了它们对 Δ 47古测温法的影响。

更新日期:2021-08-20
down
wechat
bug