当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Laboratory evidence for proton energization by collisionless shock surfing
Nature Physics ( IF 17.6 ) Pub Date : 2021-08-19 , DOI: 10.1038/s41567-021-01325-w
W. Yao 1, 2 , A. Fazzini 1 , K. Burdonov 1, 2, 3 , S. Bolaños 1 , R. Diab 1 , V. Lelasseux 1 , G. Revet 1 , J. Fuchs 1 , A. Ciardi 2 , S. N. Chen 4 , S. Kisyov 4 , V. Nastasa 4 , D. C. Popescu 4 , E. D. Filippov 3, 5 , P. Antici 6 , J. Béard 7 , S. Pikuz 5, 8 , M. Miceli 9, 10 , S. Orlando 10 , Q. Moreno 11, 12 , X. Ribeyre 11 , E. d’Humières 11
Affiliation  

Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these shocks from satellite measurements at Earth’s bow shock as well as powerful numerical simulations, the underlying acceleration mechanism or a combination thereof is still widely debated. Here we show that astrophysically relevant super-critical quasi-perpendicular magnetized collisionless shocks can be produced and characterized in the laboratory. We observe the characteristics of super-criticality in the shock profile as well as the energization of protons picked up from the ambient gas to hundreds of kiloelectronvolts. Kinetic simulations modelling the laboratory experiment identified shock surfing as the proton acceleration mechanism. Our observations not only provide direct evidence of early-stage ion energization by collisionless shocks but also highlight the role played by this particular mechanism in energizing ambient ions to feed further stages of acceleration. Furthermore, our results open the door to future laboratory experiments investigating the possible transition to other mechanisms, when increasing the magnetic field strength, or the effect that induced shock front ripples could have on acceleration processes.



中文翻译:

无碰撞冲击波激发质子的实验室证据

带电粒子可以通过天体物理环境中的无碰撞冲击波(例如超新星遗迹)加速到高能。通过与磁化的环境介质相互作用,这些冲击可以将能量传递给粒子。尽管在地球弓形冲击的卫星测量以及强大的数值模拟中越来越多地努力表征这些冲击,但潜在的加速机制或其组合仍然存在广泛争议。在这里,我们表明可以在实验室中产生和表征天体物理学相关的超临界准垂直磁化无碰撞冲击。我们观察到冲击曲线中的超临界特性以及从环境气体中拾取到数百千电子伏的质子的激励。模拟实验室实验的动力学模拟将冲击冲浪确定为质子加速机制。我们的观察不仅提供了早期离子通过无碰撞冲击激发的直接证据,而且还强调了这种特殊机制在激发环境离子以提供进一步加速阶段的作用中所起的作用。此外,我们的研究结果为未来的实验室实验打开了大门,该实验研究了在增加磁场强度时可能过渡到其他机制的情况,或者诱导冲击波前纹波可能对加速过程产生的影响。我们的观察不仅提供了早期离子通过无碰撞冲击激发的直接证据,而且还强调了这种特殊机制在激发环境离子以提供进一步加速阶段的作用中所起的作用。此外,我们的研究结果为未来的实验室实验打开了大门,该实验研究了在增加磁场强度时可能过渡到其他机制的情况,或者诱导冲击波前纹波可能对加速过程产生的影响。我们的观察不仅提供了早期离子通过无碰撞冲击激发的直接证据,而且还强调了这种特殊机制在激发环境离子以提供进一步加速阶段的作用中所起的作用。此外,我们的研究结果为未来的实验室实验打开了大门,该实验研究了在增加磁场强度时可能过渡到其他机制的情况,或者诱导冲击波前纹波可能对加速过程产生的影响。

更新日期:2021-08-19
down
wechat
bug