当前位置: X-MOL 学术bioRxiv. Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Synthetic Genetic Reversible Feynman Gate in a Single E.coli Cell and its Application in Bacterial to Mammalian Cell Information Transfer
bioRxiv - Synthetic Biology Pub Date : 2021-08-16 , DOI: 10.1101/2021.08.16.456494
Rajkamal Srivastava , Kathakali Sarkar , Deepro Bonnerjee , Sangram Bagh

Reversible computing is a nonconventional form of computing where the inputs and outputs are mapped in a unique one-to-one fashion. Reversible logic gates in single living cells have not been demonstrated. Here, we created a synthetic genetic reversible Feynman gate in a single E.coli cell. The inputs were extracellular chemicals, IPTG and aTc and the outputs were two fluorescence proteins EGFP and E2-Crimson. We developed a simple mathematical model and simulation to capture the essential features of the genetic Feynman gate and experimentally demonstrated that the behavior of the circuit was ultrasensitive and predictive. We showed an application by creating an intercellular Feynman gate, where input information from bacteria was computed and transferred to HeLa cells through shRNAs delivery and the output signals were observed as silencing of native AKT1 and CTNNB1 genes in HeLa cells. Given that one-to-one input-output mapping, such reversible genetic systems might have applications in diagnostics and sensing, where compositions of multiple input chemicals could be estimated from the outputs.

中文翻译:

单个大肠杆菌细胞中的合成遗传可逆费曼门及其在细菌到哺乳动物细胞信息传递中的应用

可逆计算是一种非常规计算形式,其中输入和输出以独特的一对一方式映射。尚未证明单个活细胞中的可逆逻辑门。在这里,我们在单个大肠杆菌中创建了一个合成的遗传可逆费曼门细胞。输入是细胞外化学物质,IPTG 和 aTc,输出是两种荧光蛋白 EGFP 和 E2-Crimson。我们开发了一个简单的数学模型和模拟来捕捉遗传费曼门的基本特征,并通过实验证明电路的行为是超灵敏和可预测的。我们通过创建细胞间费曼门展示了一个应用,其中计算来自细菌的输入信息并通过 shRNA 传递将其转移到 HeLa 细胞,并且观察到输出信号作为 HeLa 细胞中天然 AKT1 和 CTNNB1 基因的沉默。鉴于一对一的输入-输出映射,这种可逆遗传系统可能在诊断和传感方面有应用,其中可以从输出估计多种输入化学物质的成分。
更新日期:2021-08-19
down
wechat
bug