当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of composition and phase diagram features on printability and microstructure in laser powder bed fusion: Development and comparison of processing maps across alloy systems
Additive Manufacturing ( IF 10.3 ) Pub Date : 2021-08-18 , DOI: 10.1016/j.addma.2021.102258
Raiyan Seede 1 , Jiahui Ye 2 , Austin Whitt 1 , William Trehern 1 , Alaa Elwany 2 , Raymundo Arroyave 1 , Ibrahim Karaman 1
Affiliation  

Additive manufacturing (AM) has gained considerable academic and industrial interest due to its ability to produce parts with complex geometries with the potential for local microstructural control. However, due to the large number of material and process variables associated with AM, optimization of alloying compositions and process parameters to achieve desired properties is an arduous task. There is a fundamental gap in understanding how changes in process variables and alloy composition and thermodynamics affect additively manufactured parts. The present systematic study sheds light on the effects of alloying composition and corresponding phase diagram features on the printability and solidification microstructures of four binary nickel-based alloys, namely, Ni-20 at% Cu, Ni-5 at% Al, Ni-5 at% Zr, and Ni-8.8 at% Zr. These compositions are selected to represent binary isomorphous, weak solute partitioning, strong solute partitioning, and eutectic alloying conditions, respectively. Single track and bulk experiments are conducted to quantify the effects of varying material thermodynamic properties such as solidification temperature ranges, alloy melting temperatures, and other solidification conditions on resultant microstructures across the laser powder bed fusion (L-PBF) parameter space. A simple framework for developing processing maps detailing porosity formation and microsegregation across the laser power – scan speed parameter space is established and validated for each of these alloys to determine how material properties affect printability and microstructure in L-PBF. This knowledge will be vital in optimizing alloy chemistry and process parameters to design alloys specifically for additive manufacturing, as well as to provide a path toward local microstructure control.



中文翻译:

成分和相图特征对激光粉末床熔合印刷适性和微观结构的影响:合金系统加工图的开发和比较

增材制造 (AM) 能够生产具有局部微观结构控制潜力的具有复杂几何形状的零件,因此获得了相当大的学术和工业兴趣。然而,由于与 AM 相关的大量材料和工艺变量,优化合金成分和工艺参数以实现所需的性能是一项艰巨的任务。在理解工艺变量、合金成分和热力学的变化如何影响增材制造零件方面存在根本性的差距。本系统研究阐明了合金成分和相应的相图特征对四种二元镍基合金的可印刷性和凝固组织的影响,即 Ni-20 at% Cu、Ni-5 at% Al、Ni-5 at% Zr 和 Ni-8.8 at% Zr。选择这些成分分别代表二元同晶、弱溶质分配、强溶质分配和共晶合金条件。进行单道和整体实验以量化不同材料热力学特性(如凝固温度范围、合金熔化温度和其他凝固条件)对整个激光粉末床融合 (L-PBF) 参数空间中所得微观结构的影响。一个用于开发加工图的简单框架,详细说明了激光功率中的孔隙形成和微偏析 - 为这些合金中的每一种建立并验证了扫描速度参数空间,以确定材料特性如何影响 L-PBF 中的可印刷性和微观结构。

更新日期:2021-08-31
down
wechat
bug