当前位置: X-MOL 学术Rock Mech. Rock Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Laboratory Observation on the Acoustic Emission Point Cloud Caused by Hydraulic Fracturing, and the Post-pressure Breakdown Hydraulic Fracturing Re-activation due to Nearby Fault
Rock Mechanics and Rock Engineering ( IF 6.2 ) Pub Date : 2021-08-14 , DOI: 10.1007/s00603-021-02585-x
Qiquan Xiong 1 , Jesse C. Hampton 1
Affiliation  

We re-investigate the laboratory acoustic emission (AE) source location from a hydraulic fracturing test. This test produces temporally well-separated AE releases exhibiting first the reverse Omori–Utsu law (ROU-AEs), and following later the normal Omori–Utsu law (NOU-AEs) behaviors. One fault was cut in the hydraulic fracturing specimen. The spatial permeability changes along the direction of minimum in-situ stress were previously measured on two series of sub-cores. However, the previously published AE source location, which is produced from a commercial software, suffers from several issues. Through data re-analysis, we discover: (1) areas of high AE source concentration in the period of ROU-AEs can support the reverse permeability-distance relationship which is discovered by the commercial software, as well as can be closely correlated with the actual hydraulic fracturing path. (2) The AE point cloud in the period of NOU-AEs after pressure breakdown has re-oriented towards the pre-existing fault, highlighting the influence of nearby structure on hydraulic fracture growth. (3) The peak of ROU-AEs is well synchronized with the borehole pressure breakdown, while the NOU-AEs are released under significantly decreased borehole pressure. (4) The evidence suggests the ROU-period is primarily associated with hydraulic fracture creation, while the NOU-AEs may be correlated with the re-activation of the hydraulic fracture under the influence of the nearby fault.



中文翻译:

水力压裂声发射点云及附近断层压裂后水力压裂再激活的室内观测

我们重新调查了水力压裂试验中的实验室声发射 (AE) 源位置。该测试产生时间上分离良好的 AE 释放,首先表现出逆大森-宇津定律 (ROU-AE),然后是正常的大森-宇津定律 (NOU-AE) 行为。在水力压裂试件中切割了一个断层。先前在两个系列的子岩心上测量了沿最小地应力方向的空间渗透率变化。然而,之前发布的 AE 源位置是由商业软件生成的,存在几个问题。通过数据再分析,我们发现:(1)ROU-AEs时期AE源浓度高的区域可以支持商业软件发现的反向渗透率-距离关系,并且可以与实际的水力压裂路径密切相关。(2) 压力破坏后 NOU-AE 时期的 AE 点云已重新定向到预先存在的断层,突出了附近结构对水力裂缝生长的影响。(3) ROU-AEs的峰值与井壁压力击穿同步,而NOU-AEs在井眼压力显着降低的情况下释放。(4) 证据表明,ROU 期主要与水力裂缝的形成有关,而 NOU-AE 可能与附近断层影响下水力裂缝的重新激活有关。强调附近结构对水力压裂生长的影响。(3) ROU-AEs的峰值与井壁压力击穿同步,而NOU-AEs在井眼压力显着降低的情况下释放。(4) 证据表明,ROU 期主要与水力裂缝的形成有关,而 NOU-AE 可能与附近断层影响下水力裂缝的重新激活有关。强调附近结构对水力压裂生长的影响。(3) ROU-AEs的峰值与井壁压力击穿同步,而NOU-AEs在井眼压力显着降低的情况下释放。(4) 证据表明,ROU 期主要与水力裂缝的形成有关,而 NOU-AE 可能与附近断层影响下水力裂缝的重新激活有关。

更新日期:2021-08-19
down
wechat
bug