当前位置: X-MOL 学术Hereditas › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modulating the bicoid gradient in space and time
Hereditas ( IF 2.1 ) Pub Date : 2021-08-17 , DOI: 10.1186/s41065-021-00192-y
Xiaoli Cai 1 , Inge Rondeel 1, 2 , Stefan Baumgartner 1, 3
Affiliation  

The formation of the Bicoid (Bcd) gradient in the early Drosophila is one of the most fascinating observations in biology and serves as a paradigm for gradient formation, yet its mechanism is still not fully understood. Two distinct models were proposed in the past, the SDD and the ARTS model. We define novel cis- and trans-acting factors that are indispensable for gradient formation. The first one is the poly A tail length of the bcd mRNA where we demonstrate that it changes not only in time, but also in space. We show that posterior bcd mRNAs possess a longer poly tail than anterior ones and this elongation is likely mediated by wispy (wisp), a poly A polymerase. Consequently, modulating the activity of Wisp results in changes of the Bcd gradient, in controlling downstream targets such as the gap and pair-rule genes, and also in influencing the cuticular pattern. Attempts to modulate the Bcd gradient by subjecting the egg to an extra nuclear cycle, i.e. a 15th nuclear cycle by means of the maternal haploid (mh) mutation showed no effect, neither on the appearance of the gradient nor on the control of downstream target. This suggests that the segmental anlagen are determined during the first 14 nuclear cycles. Finally, we identify the Cyclin B (CycB) gene as a trans-acting factor that modulates the movement of Bcd such that Bcd movement is allowed to move through the interior of the egg. Our analysis demonstrates that Bcd gradient formation is far more complex than previously thought requiring a revision of the models of how the gradient is formed.

中文翻译:

调节空间和时间的双曲面梯度

早期果蝇中 Bicoid (Bcd) 梯度的形成是生物学中最引人入胜的观察之一,并作为梯度形成的范例,但其机制仍未完全了解。过去提出了两种不同的模型,SDD 和 ARTS 模型。我们定义了对于梯度形成必不可少的新型顺式和反式作用因子。第一个是 bcd mRNA 的 poly A 尾长,我们证明它不仅在时间上发生变化,而且在空间上也发生变化。我们表明后部 bcd mRNA 具有比前部更长的聚尾,这种伸长很可能由聚 A 聚合酶纤束 (wisp) 介导。因此,调节 Wisp 的活性会导致 Bcd 梯度的变化,从而控制下游目标,如间隙和配对规则基因,以及影响角质层模式。通过使卵经历额外的核循环,即通过母本单倍体 (mh) 突变的第 15 个核循环来调节 Bcd 梯度的尝试没有显示出对梯度的出现和下游靶标的控制的影响。这表明在前 14 个核循环期间确定了节段性原原素。最后,我们将细胞周期蛋白 B (CycB) 基因鉴定为调节 Bcd 运动的反式作用因子,从而允许 Bcd 运动穿过卵子内部。我们的分析表明,Bcd 梯度的形成比以前认为的要复杂得多,需要修改梯度形成的模型。通过母体单倍体 (mh) 突变的第 15 个核循环显示没有影响,无论是对梯度的出现还是对下游目标的控制。这表明在前 14 个核循环期间确定了节段性原原素。最后,我们将细胞周期蛋白 B (CycB) 基因鉴定为调节 Bcd 运动的反式作用因子,从而允许 Bcd 运动穿过卵子内部。我们的分析表明,Bcd 梯度的形成比以前认为的要复杂得多,需要修改梯度形成的模型。通过母体单倍体 (mh) 突变的第 15 个核循环显示没有影响,无论是对梯度的出现还是对下游目标的控制。这表明在前 14 个核循环期间确定了节段性原原素。最后,我们将细胞周期蛋白 B (CycB) 基因鉴定为调节 Bcd 运动的反式作用因子,从而允许 Bcd 运动穿过卵子内部。我们的分析表明,Bcd 梯度的形成比以前认为的要复杂得多,需要修改梯度形成的模型。这表明在前 14 个核循环期间确定了节段性原原素。最后,我们将细胞周期蛋白 B (CycB) 基因鉴定为调节 Bcd 运动的反式作用因子,从而允许 Bcd 运动穿过卵子内部。我们的分析表明,Bcd 梯度的形成比以前认为的要复杂得多,需要修改梯度形成的模型。这表明在前 14 个核循环期间确定了节段性原原素。最后,我们将细胞周期蛋白 B (CycB) 基因鉴定为调节 Bcd 运动的反式作用因子,从而允许 Bcd 运动穿过卵子内部。我们的分析表明,Bcd 梯度的形成比以前认为的要复杂得多,需要修改梯度形成的模型。
更新日期:2021-08-19
down
wechat
bug