当前位置: X-MOL 学术J. Neural Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbon-based neural electrodes: promises and challenges
Journal of Neural Engineering ( IF 3.7 ) Pub Date : 2021-09-03 , DOI: 10.1088/1741-2552/ac1e45
Mamta Devi 1 , Maria Vomero 2 , Erwin Fuhrer 3 , Elisa Castagnola 4 , Calogero Gueli 5 , Surabhi Nimbalkar 6 , Mieko Hirabayashi 6 , Sam Kassegne 6 , Thomas Stieglitz 5, 7, 8 , Swati Sharma 1
Affiliation  

Neural electrodes are primary functional elements of neuroelectronic devices designed to record neural activity based on electrochemical signals. These electrodes may also be utilized for electrically stimulating the neural cells, such that their response can be simultaneously recorded. In addition to being medically safe, the electrode material should be electrically conductive and electrochemically stable under harsh biological environments. Mechanical flexibility and conformability, resistance to crack formation and compatibility with common microfabrication techniques are equally desirable properties. Traditionally, (noble) metals have been the preferred for neural electrode applications due to their proven biosafety and a relatively high electrical conductivity. Carbon is a recent addition to this list, which is far superior in terms of its electrochemical stability and corrosion resistance. Carbon has also enabled 3D electrode fabrication as opposed to the thin-film based 2D structures. One of carbon’s peculiar aspects is its availability in a wide range of allotropes with specialized properties that render it highly versatile. These variations, however, also make it difficult to understand carbon itself as a unique material, and thus, each allotrope is often regarded independently. Some carbon types have already shown promising results in bioelectronic medicine, while many others remain potential candidates. In this topical review, we first provide a broad overview of the neuroelectronic devices and the basic requirements of an electrode material. We subsequently discuss the carbon family of materials and their properties that are useful in neural applications. Examples of devices fabricated using bulk and nano carbon materials are reviewed and critically compared. We then summarize the challenges, future prospects and next-generation carbon technology that can be helpful in the field of neural sciences. The article aims at providing a common platform to neuroscientists, electrochemists, biologists, microsystems engineers and carbon scientists to enable active and comprehensive efforts directed towards carbon-based neuroelectronic device fabrication.



中文翻译:

碳基神经电极:前景与挑战

神经电极是神经电子设备的主要功能元件,旨在根据电化学信号记录神经活动。这些电极还可用于电刺激神经细胞,从而可以同时记录它们的反应。除了在医学上安全外,电极材料还应在恶劣的生物环境下具有导电性和电化学稳定性。机械柔韧性和一致性、抗裂纹形成以及与常见微制造技术的兼容性同样是理想的特性。传统上,(贵)金属因其经证实的生物安全性和相对较高的导电性而成为神经电极应用的首选。碳是最近添加到此列表中的,它在电化学稳定性和耐腐蚀性方面要优越得多。与基于薄膜的 2D 结构相反,碳还支持 3D 电极制造。碳的一个特殊方面是它在广泛的同素异形体中的可用性,这些同素异形体具有使其高度通用的特殊特性。然而,这些变化也使人们难以将碳本身理解为一种独特的材料,因此,每个同素异形体通常被独立地看待。一些碳类型已经在生物电子医学中显示出有希望的结果,而许多其他类型仍然是潜在的候选者。在这篇专题评论中,我们首先对神经电子设备和电极材料的基本要求进行了广泛的概述。我们随后讨论了碳材料家族及其在神经应用中有用的特性。审查并严格比较了使用大块碳和纳米碳材料制造的器件示例。然后我们总结了对神经科学领域有帮助的挑战、未来前景和下一代碳技术。本文旨在为神经科学家、电化学家、生物学家、微系统工程师和碳科学家提供一个通用平台,以促进针对碳基神经电子设备制造的积极和全面的努力。未来前景和对神经科学领域有帮助的下一代碳技术。本文旨在为神经科学家、电化学家、生物学家、微系统工程师和碳科学家提供一个通用平台,以促进针对碳基神经电子设备制造的积极和全面的努力。未来前景和对神经科学领域有帮助的下一代碳技术。本文旨在为神经科学家、电化学家、生物学家、微系统工程师和碳科学家提供一个通用平台,以促进针对碳基神经电子设备制造的积极和全面的努力。

更新日期:2021-09-03
down
wechat
bug