当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Geometric Phase in Optics: From Wavefront Manipulation to Waveguiding
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2021-08-16 , DOI: 10.1002/lpor.202100003
Chandroth Pannian Jisha 1 , Stefan Nolte 1, 2 , Alessandro Alberucci 1
Affiliation  

Geometric phase is a unifying and central concept in physics, including optics. As a matter of fact, optics played a pivotal role from the inception of this new paradigm, as some of the first experimental demonstrations have been carried out in optics. A specific type of geometric phase was first introduced by Pancharatnam while investigating interference effects between different polarizations. This specific type of geometric phase, nowadays called the Pancharatnam–Berry phase, is related to the variation of light polarization, encompassing exotic properties when compared with the dynamic phase associated with the optical path. The most widespread manifestation of the Pancharatnam–Berry phase occurs in the presence of a twisted anisotropic material, yielding a point-wise phase modulation proportional to the local rotation angle of the material. Here the basic mechanism behind the Pancharatnam–Berry phase is discussed. The various applications of this relatively original concept in photonics are then reviewed, presenting both the most important results and manufactured devices reported in literature. The interplay between geometric phase and diffraction occurring in bulk structures is discussed in detail. In the latter case it is shown how geometric phase can be harnessed to generate a new kind of optical waveguide without the necessity of any index gradient.

中文翻译:

光学中的几何相位:从波前操纵到波导

几何相位是物理学(包括光学)中一个统一的核心概念。事实上,从这个新范式的诞生起,光学就发挥了关键作用,因为一些最初的实验演示是在光学中进行的。Pancharatnam 在研究不同极化之间的干涉效应时首先引入了一种特定类型的几何相位。这种特定类型的几何相位,现在称为 Pancharatnam-Berry 相位,与光偏振的变化有关,与与光路相关的动态相位相比,包含奇异的特性。Pancharatnam-Berry 相的最广泛表现发生在扭曲的各向异性材料的存在下,产生与材料的局部旋转角成正比的逐点相位调制。这里讨论了 Pancharatnam-Berry 阶段背后的基本机制。然后回顾了这个相对原始的概念在光子学中的各种应用,展示了最重要的结果和文献中报道的制造设备。详细讨论了几何相位和体结构中发生的衍射之间的相互作用。在后一种情况下,展示了如何利用几何相位来生成一种新型光波导,而无需任何折射率梯度。详细讨论了几何相位和体结构中发生的衍射之间的相互作用。在后一种情况下,展示了如何利用几何相位来生成一种新型光波导,而无需任何折射率梯度。详细讨论了几何相位和体结构中发生的衍射之间的相互作用。在后一种情况下,展示了如何利用几何相位来生成一种新型光波导,而无需任何折射率梯度。
更新日期:2021-10-19
down
wechat
bug