当前位置: X-MOL 学术J. Electron Spectrosc. Relat. Phenomena › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Production of secondary electrons and photons and energy absorption mechanisms in amorphous carbon irradiated by photons in the energy range of 0.03 to 17.4 keV
Journal of Electron Spectroscopy and Related Phenomena ( IF 1.8 ) Pub Date : 2021-08-15 , DOI: 10.1016/j.elspec.2021.147111
A.G. Kochur 1 , A.P. Chaynikov 1 , V.A. Yavna 1
Affiliation  

Energy absorption mechanisms in amorphous carbon under irradiation by 0.03–17.4 keV photons is studied by Monte Carlo simulation with accounting for the cascade decays of inner-shell vacancies and tracking all secondary electrons and photons including very-low-energy ones. Energy absorption by the atoms of the sample that underwent initial ionization by incident photons is only important at energies of several tens of eV (UV and XUV range). The principal mechanism of energy absorption on the whole incident photon energy interval is through inelastic processes caused by secondary electrons. At incident photon energies above C1s ionization threshold low-energy KLL Auger electrons produced by the cascade decay of C1s vacancy transfer energy to the medium in the vicinity of the site of initial photoionization. At energies far above the C1s-threshold, high-energy photoelectrons spread the absorbed energy over larger volumes and with smaller density. A great portion of the energy brought by incident photons, about 42 %, is transferred to the medium by low-energy secondary electrons and photons that are incapable of ionizing or exciting the atoms of the sample. The number of low-energy electrons is proportional to the energy of an incident photon, and at incident photon energies of several keV, one initial photoionization produces hundreds of secondary low-energy electrons.



中文翻译:

能量范围为 0.03 至 17.4 keV 的光子辐照无定形碳中二次电子和光子的产生和能量吸收机制

通过蒙特卡罗模拟研究了无定形碳在 0.03-17.4 keV 光子照射下的能量吸收机制,其中考虑了内壳空位的级联衰减并跟踪所有二次电子和光子,包括非常低能的电子和光子。通过入射光子进行初始电离的样品原子的能量吸收仅在几十 eV(UV 和 XUV 范围)的能量下才重要。整个入射光子能量区间的能量吸收的主要机制是通过二次电子引起的非弹性过程。在入射光子能量高于 C1s 电离阈值时,由 C1s 空位级联衰减产生的低能 KLL 俄歇电子将能量转移到初始光电离位点附近的介质。在远高于 C1s 阈值的能量下,高能光电子将吸收的能量扩散到更大的体积和更小的密度。入射光子带来的大部分能量(约 42%)通过低能二次电子和无法电离或激发样品原子的光子转移到介质中。低能电子的数量与入射光子的能量成正比,在几个 keV 的入射光子能量下,一次初始光电离会产生数百个次级低能电子。

更新日期:2021-08-19
down
wechat
bug