当前位置: X-MOL 学术Semicond. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First-principles calculations to investigate elastic, electronic and thermophysical properties of the Dy2Bi2Fe4O12 ferromagnetic semiconductor
Semiconductor Science and Technology ( IF 1.9 ) Pub Date : 2021-07-29 , DOI: 10.1088/1361-6641/ac1311
L C Garrido 1 , C E Deluque Toro 1 , I Daz 2 , D A Landnez Tllez 3, 4 , J Roa-Rojas 3
Affiliation  

Ab initio calculations of mechanic, electronic and thermodynamic properties for the perovskite Dy2Bi2Fe4O12 oxide compound are reported. The mechanical analysis showed that the material presents elastic anisotropy, with Poisson and Pugh ratios typical of a ductile material, which is due to the possibility of shear between structural cells. The band structure calculations were carried out through first principles calculations, using the formalism of the Functional Density Theory and the Flat Wave and Pseudopotential method through the VASP code. The exchange and correlation energy was described by the Generalized Gradient Approximation, including spin polarization and the Hubbard’s potential correction due to the presence of Fe-3d orbitals. The semiconductor behaviour of the material was established since a band gap of 1.76 eV was obtained. The material evidenced a ductile mechanical nature due to the tendency to respond to shear stresses and a hardness value that is consistent with reports made for other perovskite-type materials. The dependence of specific heat with respect to temperature and pressure, thus such as the coefficient of thermal expansion, the Debye temperature and the Grneisen parameter, were calculated from the equation of state, using the quasi-harmonic Debye model. Changes in temperature and pressure modify the vibrations in the interatomic bonds, directly affecting the thermodynamic properties of the material. The theoretical results obtained are comparable with the experimental values obtained in the literature for this material reported as a ferromagnetic semiconductor.



中文翻译:

研究 Dy2Bi2Fe4O12 铁磁半导体的弹性、电子和热物理性质的第一性原理计算

钙钛矿 Dy 2 Bi 2 Fe 4 O 12力学、电子和热力学性质的从头算计算氧化物化合物的报道。力学分析表明,材料呈现弹性各向异性,具有典型的延展性材料的泊松比和普格比,这是由于结构单元之间可能发生剪切。能带结构计算是通过第一性原理计算进行的,通过 VASP 代码使用功能密度理论和平波和伪势方法的形式。由于存在 Fe-3d 轨道,交换和相关能量由广义梯度近似描述,包括自旋极化和哈伯德电位校正。由于获得了 1.76 eV 的带隙,因此确定了材料的半导体行为。由于对剪切应力的响应趋势和硬度值与其他钙钛矿型材料的报告一致,因此该材料具有延展性机械性质。比热对温度和压力的依赖性,例如热膨胀系数、德拜温度和 Grneisen 参数,是使用准谐波德拜模型从状态方程计算出来的。温度和压力的变化会改变原子间键的振动,直接影响材料的热力学性能。所获得的理论结果与文献中针对这种被报道为铁磁半导体的材料获得的实验值相当。比热对温度和压力的依赖性,例如热膨胀系数、德拜温度和 Grneisen 参数,是使用准谐波德拜模型从状态方程计算出来的。温度和压力的变化会改变原子间键的振动,直接影响材料的热力学性能。所获得的理论结果与文献中针对这种被报道为铁磁半导体的材料获得的实验值相当。比热对温度和压力的依赖性,例如热膨胀系数、德拜温度和 Grneisen 参数,是使用准谐波德拜模型从状态方程计算出来的。温度和压力的变化会改变原子间键的振动,直接影响材料的热力学性能。所获得的理论结果与文献中针对这种被报道为铁磁半导体的材料获得的实验值相当。温度和压力的变化会改变原子间键的振动,直接影响材料的热力学性能。所获得的理论结果与文献中针对这种被报道为铁磁半导体的材料获得的实验值相当。温度和压力的变化会改变原子间键的振动,直接影响材料的热力学性能。所获得的理论结果与文献中针对这种被报道为铁磁半导体的材料获得的实验值相当。

更新日期:2021-07-29
down
wechat
bug