当前位置: X-MOL 学术Russ. Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogen energy: development prospects and materials
Russian Chemical Reviews ( IF 7.0 ) Pub Date : 2021-06-30 , DOI: 10.1070/rcr5014
Sergey P. Filippov 1 , Andrey B. Yaroslavtsev 2
Affiliation  

The review addresses the prospects of global hydrogen energy development. Particular attention is given to the design of materials for sustainable hydrogen energy applications, including hydrogen production, purification, storage, and conversion to energy. The review highlights the key role of oxide-supported metal or alloy nanoparticles as catalysts in the hydrogen production via the conversion of natural gas or alcohols. An alternative approach is the pyrolysis of hydrocarbons giving hydrogen and carbon. The direct production of high-purity hydrogen can be performed using electrolysis or membrane catalysis. Apart from conventional hydrogen storage methods such as the compression and liquefaction, the hydrogen alloy absorption and chemical conversion to liquid carriers (ammonia and toluene cycles) are considered. Fuel cells, containing catalysts and proton-conducting membranes as the key components, are used for hydrogen energy generation. Binary platinum alloys or core – shell structures supported on carbon or oxides can be employed to facilitate the oxygen electroreduction and CO electrooxidation in low-temperature fuel cells. High conductivity and selectivity are provided by perfluorinated sulfonic acid membranes. The high cost of the latter materials dictates the development of alternative membrane materials. A crucial issue in high-temperature fuel cells is the necessity of reducing the operating temperature and ohmic losses. This problem can be solved by designing thin-film materials and replacing oxygen-conducting ceramic membranes by proton-conducting membranes.

The bibliography includes 290 references.



中文翻译:

氢能:发展前景与材料

该评论讨论了全球氢能发展的前景。特别关注可持续氢能应用的材料设计,包括氢气生产、净化、储存和能源转化。该评论强调了氧化物负载的金属或合金纳米粒子作为催化剂在通过天然气或酒精的转化。另一种方法是热解烃类,产生氢和碳。可以使用电解或膜催化直接生产高纯氢气。除了压缩和液化等常规储氢方法外,还考虑了氢合金吸收和化学转化为液体载体(氨和甲苯循环)。燃料电池以催化剂和质子传导膜为关键部件,用于产生氢能。可以采用负载在碳或氧化物上的二元铂合金或核壳结构来促进低温燃料电池中的氧电还原和 CO 电氧化。全氟磺酸膜提供了高导电性和选择性。后一种材料的高成本决定了替代膜材料的开发。高温燃料电池的一个关键问题是降低工作温度和欧姆损耗的必要性。这个问题可以通过设计薄膜材料和用质子传导膜代替氧传导陶瓷膜来解决。

参考书目包括 290 篇参考文献。

更新日期:2021-06-30
down
wechat
bug