当前位置: X-MOL 学术Chin. Phys. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle Supported by the following grants: the National Key R&D program of China (2018YFA0404201, 2018YFA0404202, 2018YFA0404203), the National Natural Science Foundation of China (12022502, 11905227, U1931112, 11635011, 11761141001, Y811A35, 11675187, U1831208, U1931111) and in Thailand by RTA6280002 from Thailand Science Research and Innovation
Chinese Physics C ( IF 3.6 ) Pub Date : 2021-07-27 , DOI: 10.1088/1674-1137/ac041b
F. Aharonian 1, 2 , Q. An 3, 4 , Axikegu 5 , L.X. Bai 6 , Y.X. Bai 7, 8 , Y.W. Bao 9 , D. Bastieri 10 , X.J. Bi 7, 8, 11 , Y.J. Bi 7, 8 , H. Cai 12 , J.T. Cai 10 , Z. Cao 7, 8, 11 , Z. Cao 3, 4 , J. Chang 13 , J.F. Chang 3, 7, 8 , X.C. Chang 7, 8 , B.M. Chen 14 , J. Chen 6 , L. Chen 7, 8, 11 , L. Chen 15 , L. Chen 5 , M.J. Chen 7, 8 , M.L. Chen 3, 7, 8 , Q.H. Chen 5 , S.H. Chen 7, 8, 11 , S.Z. Chen 7, 8 , T.L. Chen 16 , X.L. Chen 7, 8, 11 , Y. Chen 9 , N. Cheng 7, 8 , Y.D. Cheng 7, 8 , S.W. Cui 14 , X.H. Cui 17 , Y.D. Cui 18 , B.Z. Dai 19 , H.L. Dai 3, 7, 8 , Z.G. Dai 9 , Danzengluobu 16 , D. della Volpe 20 , B. D'Ettorre Piazzoli 21 , X.J. Dong 7, 8 , J.H. Fan 10 , Y.Z. Fan 13 , Z.X. Fan 7, 8 , J. Fang 19 , K. Fang 7, 8 , C.F. Feng 22 , L. Feng 13 , S.H. Feng 7, 8 , Y.L. Feng 13 , B. Gao 7, 8 , C.D. Gao 22 , Q. Gao 16 , W. Gao 22 , M.M. Ge 19 , L.S. Geng 7, 8 , G.H. Gong 23 , Q.B. Gou 7, 8 , M.H. Gu 3, 7, 8 , J.G. Guo 7, 8, 11 , X.L. Guo 5 , Y.Q. Guo 7, 8 , Y.Y. Guo 7, 8, 11, 13 , Y.A. Han 24 , H.H. He 7, 8, 11 , H.N. He 13 , J.C. He 7, 8, 11 , S.L. He 10 , X.B. He 18 , Y. He 5 , M. Heller 20 , Y.K. Hor 18 , C. Hou 7, 8 , X. Hou 25 , H.B. Hu 7, 8, 11 , S. Hu 6 , S.C. Hu 7, 8, 11 , X.J. Hu 23 , D.H. Huang 5 , Q.L. Huang 7, 8 , W.H. Huang 22 , X.T. Huang 22 , Z.C. Huang 5 , F. Ji 7, 8 , X.L. Ji 3, 7, 8 , H.Y. Jia 5 , K. Jiang 3, 4 , Z.J. Jiang 19 , C. Jin 7, 8, 11 , D. Kuleshov 26 , K. Levochkin 26 , B.B. Li 14 , C. Li 7, 8 , C. Li 3, 4 , F. Li 3, 7, 8 , H.B. Li 7, 8 , H.C. Li 7, 8 , H.Y. Li 4, 13 , J. Li 3, 7, 8 , K. Li 7, 8 , W.L. Li 22 , X. Li 3, 4 , X. Li 5 , X.R. Li 7, 8 , Y. Li 6 , Y.Z. Li 7, 8, 11 , Z. Li 7, 8 , Z. Li 27 , E.W. Liang 28 , Y.F. Liang 28 , S.J. Lin 18 , B. Liu 4 , C. Liu 7, 8 , D. Liu 22 , H. Liu 5 , H.D. Liu 24 , J. Liu 7, 8 , J.L. Liu 29 , J.S. Liu 18 , J.Y. Liu 7, 8 , M.Y. Liu 16 , R.Y. Liu 9 , S.M. Liu 13 , W. Liu 7, 8 , Y.N. Liu 23 , Z.X. Liu 6 , W.J. Long 5 , R. Lu 19 , H.K. Lv 7, 8 , B.Q. Ma 27 , L.L. Ma 7, 8 , X.H. Ma 7, 8 , J.R. Mao 25 , A. Masood 5 , W. Mitthumsiri 30 , T. Montaruli 20 , Y.C. Nan 22 , B.Y. Pang 5 , P. Pattarakijwanich 30 , Z.Y. Pei 10 , M.Y. Qi 7, 8 , B.Q. Qiao 7 , D. Ruffolo 30 , V. Rulev 26 , A. Siz 30 , L. Shao 14 , O. Shchegolev 26, 31 , X.D. Sheng 7, 8 , J.R. Shi 7, 8 , H.C. Song 27 , Yu.V. Stenkin 26, 31 , V. Stepanov 26 , Q.N. Sun 5 , X.N. Sun 28 , Z.B. Sun 32 , P.H.T. Tam 18 , Z.B. Tang 3, 4 , W.W. Tian 11, 17 , B.D. Wang 7, 8 , C. Wang 32 , H. Wang 5 , H.G. Wang 10 , J.C. Wang 25 , J.S. Wang 29 , L.P. Wang 22 , L.Y. Wang 7, 8 , R.N. Wang 5 , W. Wang 18 , W. Wang 12 , X.G. Wang 28 , X.J. Wang 7, 8 , X.Y. Wang 9 , Y.D. Wang 7, 8 , Y.J. Wang 7, 8 , Y.P. Wang 7, 8, 11 , Z. Wang 3, 7, 8 , Z. Wang 29 , Z.H. Wang 6 , Z.X. Wang 19 , D.M. Wei 13 , J.J. Wei 13 , Y.J. Wei 7, 8, 11 , T. Wen 19 , C.Y. Wu 7, 8 , H.R. Wu 7, 8 , S. Wu 7, 8 , W.X. Wu 5 , X.F. Wu 13 , S.Q. Xi 5 , J. Xia 4, 13 , J.J. Xia 5 , G.M. Xiang 11, 15 , G. Xiao 7, 8 , H.B. Xiao 10 , G.G. Xin 12 , Y.L. Xin 5 , Y. Xing 15 , D.L. Xu 29 , R.X. Xu 27 , L. Xue 22 , D.H. Yan 25 , C.W. Yang 6 , F.F. Yang 3, 7, 8 , J.Y. Yang 18 , L.L. Yang 18 , M.J. Yang 7, 8 , R.Z. Yang 4 , S.B. Yang 19 , Y.H. Yao 6 , Z.G. Yao 7, 8 , Y.M. Ye 23 , L.Q. Yin 7, 8 , N. Yin 22 , X.H. You 7, 8 , Z.Y. You 7, 8, 11 , Y.H. Yu 22 , Q. Yuan 13 , H.D. Zeng 13 , T.X. Zeng 3, 7, 8 , W. Zeng 19 , Z.K. Zeng 7, 8, 11 , M. Zha 7, 8 , X.X. Zhai 7, 8 , B.B. Zhang 9 , H.M. Zhang 9 , H.Y. Zhang 22 , J.L. Zhang 17 , J.W. Zhang 6 , L. Zhang 19 , L. Zhang 14 , L.X. Zhang 10 , P.F. Zhang 19 , P.P. Zhang 14 , R. Zhang 4, 13 , S.R. Zhang 14 , S.S. Zhang 7, 8 , X. Zhang 9 , X.P. Zhang 7, 8 , Y. Zhang 7, 13 , Y. Zhang 7, 8 , Y.F. Zhang 5 , Y.L. Zhang 7, 8 , B. Zhao 5 , J. Zhao 7, 8 , L. Zhao 3, 4 , L.Z. Zhao 14 , S.P. Zhao 13, 22 , F. Zheng 32 , Y. Zheng 5 , B. Zhou 7, 8 , H. Zhou 29 , J.N. Zhou 15 , P. Zhou 9 , R. Zhou 6 , X.X. Zhou 5 , C.G. Zhu 22 , F.R. Zhu 5 , H. Zhu 17 , K.J. Zhu 3, 7, 8, 11 , X. Zuo 7, 8
Affiliation  

The first Water Cherenkov detector of the LHAASO experiment (WCDA-1) has been operating since April 2019. The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle. The WCDA-1 achieves a sensitivity of 65 mCU per year, with a statistical threshold of 5 $\sigma$. To accomplish this, a 97.7% cosmic-ray background rejection rate around 1 TeV and 99.8% around 6 TeV with an approximate photon acceptance of 50% is achieved after applying an algorithm to separate gamma-induced showers. The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45 at 1 TeV and better than 0.2 above 6 TeV, with a pointing accuracy better than 0.05. These values all match the design specifications. The energy resolution is found to be 33% for gamma rays around 6 TeV. The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.



中文翻译:

LHAASO-WCDA 的性能和蟹状星云作为标准烛光的观测 得到以下资助:国家重点研发计划(2018YFA0404201,2018YFA0404202,2018YFA0404203),国家自然科学基金(12591211212012012012012) 11635011, 11761141001, Y811A35, 11675187, U1831208, U1931111) 和在泰国由来自泰国科学研究与创新的 RTA6280002

LHAASO 实验的首个水切伦科夫探测器(WCDA-1)自 2019 年 4 月开始运行。 通过观察蟹状星云作为标准烛光,分析了第一年的数据以测试其性能。WCDA-1 的灵敏度为每年 65 mCU,统计阈值为 5$\西格玛$. 为了实现这一点,在应用一种算法来分离伽马诱发的淋浴后,在 1 TeV 附近达到 97.7% 的宇宙射线背景抑制率,在 6 TeV 附近达到 99.8%,光子接受率约为 50%。使用蟹状星云作为点源测量的角分辨率在 1 TeV 时约为 0.45,在 6 TeV 时优于 0.2,指向精度优于 0.05。这些值都符合设计规范。发现 6 TeV 左右的伽马射线的能量分辨率为 33%。蟹状星云在 500 GeV 到 15.8 TeV 范围内的光谱能量分布被测量,发现与其他 TeV 伽马射线天文台的结果一致。

更新日期:2021-07-27
down
wechat
bug