当前位置: X-MOL 学术J. Phys. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Continuum time-delayed electron hopping in the extended dynamical molecules and entropy-ruled Einstein relation for organic semiconductors
Journal of Physics Communications ( IF 1.1 ) Pub Date : 2021-07-22 , DOI: 10.1088/2399-6528/ac13b5
K Navamani

Charge transport (CT) in dynamically disordered molecular systems is still unclear; though it is fundamentally important to understand the semiconducting properties of molecular devices. In this regard, we explore vibronically coupled polaron hopping transport in the extended hopping systems (N+1 sites) of thiazolothiazole (TZTZ) based molecules. The molecular vibrations correlated charge transfer integral and site energy fluctuation effects on polaron transport are analyzed by kinetic Monte-Carlo simulations. In order to quantify the CT properties more precisely, we have proposed the continuum time delayed CT mechanism, which takes account of typical disordered (static or dynamic) effect via dispersion on each CT quantity (like charge transfer rate, diffusion coefficient, mobility, current density and etc) at each hopping. The charge compressibility analysis further addresses the electronic level understanding of all CT quantities, which originally relates the thermodynamic density of states with CT. Using differential entropy-dependent charge density and diffusion expressions, the drift-diffusion transport has been elucidated for different extended systems of TZTZ derivatives. Besides, we have mainly developed entropy-ruled diffusion-mobility relation for both degenerate and nondegenerate materials to study the validity and limitations of original Einstein relation, which directly pertain to the device performance. Here, the traversing chemical potential along the hopping sites is the deterministic parameter of diffusion-mobility ratio. Using our continuum time delayed model, we can categorize the typical disordered transport in the molecular semiconductors; whether is dynamic or static or intermediate disordered transport.



中文翻译:

有机半导体的扩展动力学分子中的连续时延电子跳跃和熵规则的爱因斯坦关系

动态无序分子系统中的电荷传输(CT)仍不清楚;尽管了解分子器件的半导体特性具有根本的重要性。在这方面,我们探索了基于噻唑并噻唑 (TZTZ) 的分子的扩展跳跃系统(N+1 位点)中的振动耦合极化子跳跃传输。通过动力学蒙特卡罗模拟分析了分子振动相关的电荷转移积分和位点能量波动对极化子传输的影响。为了更精确地量化 CT 特性,我们提出了连续时间延迟 CT 机制,该机制通过对每个 CT 量(如电荷转移率、扩散系数、迁移率、电流)的色散来考虑典型的无序(静态或动态)效应密度等)在每次跳跃。电荷可压缩性分析进一步解决了对所有 CT 量的电子水平理解,它最初将状态的热力学密度与 CT 相关联。使用微分熵相关电荷密度和扩散表达式,已经阐明了 TZTZ 衍生物的不同扩展系统的漂移-扩散传输。此外,我们主要开发了简并和非简并材料的熵规则扩散-迁移率关系,以研究原始爱因斯坦关系的有效性和局限性,这些关系直接关系到器件性能。在这里,沿跳跃位点的穿越化学势是扩散迁移率的确定性参数。使用我们的连续时间延迟模型,我们可以对分子半导体中典型的无序输运进行分类;

更新日期:2021-07-22
down
wechat
bug