当前位置: X-MOL 学术Smart Mater. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D-printed liquid metal-based stretchable conductors and pressure sensors
Smart Materials and Structures ( IF 3.7 ) Pub Date : 2021-08-03 , DOI: 10.1088/1361-665x/ac15a1
Thassyo Pinto 1 , Claudia Chen 2 , Cody Pinger 3 , Xiaobo Tan 1, 2
Affiliation  

Microfluidic devices control fluids on the micrometer-scale and are commonly used for lab-on-chip applications, such as sensors, micropumps and biological analyzers. Commonly reported fabrication methods for achieving flexible microfluidic structures are labor-intensive, require many cumbersome steps, and have limited options for materials. This paper presents a rapid-manufacturing technique using a PolyJet 3D-printer for creating soft microfluidic substrates embedded with liquid metals to fabricate stretchable conductors and pressure sensors. By using this novel method, several spiral-shaped soft pressure sensors with multimaterial-based substrates are 3D-printed simultaneously in less than six minutes. Microfluidic channels with cross-sections ranging from 150 150 to 350 350 m are successfully achieved in a soft substrate. This 3D-printing method allows fabrication of complex, enclosed channels without any photocurable support material, thus minimizing post-processing time. Simulation and experiments are conducted to characterize the quasi-static and dynamic properties of the fabricated pressure sensor. In particular, experimental results show that these 3D-printed microfluidic pressure sensors are robust, capable of withstanding high pressures up to 1 MPa.



中文翻译:

3D 打印液态金属可拉伸导体和压力传感器

微流体设备控制微米级的流体,通常用于芯片实验室应用,例如传感器、微型泵和生物分析仪。通常报道的用于实现柔性微流体结构的制造方法是劳动密集型的,需要许多繁琐的步骤,并且材料的选择有限。本文介绍了一种使用 PolyJet 3D 打印机创建嵌入液态金属的软微流体基板的快速制造技术,以制造可拉伸导体和压力传感器。通过使用这种新颖的方法,可以在不到六分钟的时间内同时 3D 打印多个具有基于多材料的基板的螺旋形软压力传感器。横截面范围从 150 150 到 350 350 的微流体通道m 在软基板上成功实现。这种 3D 打印方法允许在没有任何光固化支撑材料的情况下制造复杂的封闭通道,从而最大限度地减少后处理时间。进行模拟和实验以表征制造的压力传感器的准静态和动态特性。特别是,实验结果表明,这些 3D 打印的微流体压力传感器非常坚固,能够承受高达 1 MPa 的高压。

更新日期:2021-08-03
down
wechat
bug