当前位置: X-MOL 学术Geomicrobiol. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Calcite and Vaterite Biosynthesis by Nitrate Dissimilating Bacteria in Carbonatogenesis Process under Aerobic and Anaerobic Conditions
Geomicrobiology Journal ( IF 2.3 ) Pub Date : 2021-08-12 , DOI: 10.1080/01490451.2021.1951398
Marwa Eltarahony 1 , Sahar Zaki 1 , Ayman Kamal 1, 2 , Desouky Abd-El-Haleem 1
Affiliation  

Abstract

This study deals with 16S-rDNA identified bacteria, Lysinibacillus sp., Raoultella sp., and Streptomyces sp. capable of precipitating CaCO3 through nitrate reduction aerobically and anaerobically. The produced CaCO3 crystals were analyzed using XRD, EDX, FTIR, TGA and SEM. The results showed that the carbonatogenic bacteria served as nucleation sites for CaCO3 precipitation with distinct variation in polymorph and morphology; reflecting strain-specific property. Notably, the amount of precipitated CaCO3 recorded 3.27 (aerobic), 1.55 (anaerobic), 4.15 (aerobic), 3.75 (aerobic) and 1.87 (anaerobic) g/100 mL of strains Lysinibacillus sp., Streptomyces sp. and Raoultella sp., respectively, after 240 h of incubation. The study of changes in media chemistry during carbonatogenesis process revealed positive correlation between bacterial growth, nitrate reductase activity, pH, EC, Ca2+ depletion, amount of deposited CaCO3 and NO3 consumption. Therefore, the applications of these bacterial strains, which were employed for the first time in carbonatogenesis process, are promising in the environmental, biomedical and civil engineering fields.



中文翻译:

有氧和厌氧条件下碳化过程中硝酸盐异化细菌的方解石和球霰石生物合成

摘要

本研究涉及经 16S-rDNA 鉴定的细菌Lysinibacillus sp。, Raoultella sp. 链霉菌属。能够通过有氧和无氧还原硝酸盐来沉淀CaCO 3。使用XRD、EDX、FTIR、TGA和SEM分析产生的CaCO 3晶体。结果表明,碳酸化细菌作为CaCO 3沉淀的成核位点,其多晶型和形态变化明显;反映应变特异性。值得注意的是,沉淀的 CaCO 3的量记录为 3.27(需氧)、1.55(厌氧)、4.15(需氧)、3.75(需氧)和 1.87(厌氧)g/100 mL赖氨酸杆菌属菌种,链霉菌属。Raoultella sp。,分别在孵育 240 小时后。对碳酸生成过程中培养基化学变化的研究揭示了细菌生长、硝酸盐还原酶活性、pH、EC、Ca 2+消耗、沉积的CaCO 3量和NO 3 -消耗之间的正相关。因此,这些首次用于碳生成过程的菌株在环境、生物医学和土木工程领域的应用前景广阔。

更新日期:2021-09-04
down
wechat
bug