当前位置: X-MOL 学术IEEE Trans. Aerosp. Electron. Sys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sparse Nested Arrays With Spatially Spread Square Acoustic Vector Sensors for High-Accuracy Underdetermined Direction Finding
IEEE Transactions on Aerospace and Electronic Systems ( IF 4.4 ) Pub Date : 2021-02-08 , DOI: 10.1109/taes.2021.3057682
Jin He , Linna Li , Ting Shu

In acoustic sensing systems, acoustic vector sensor (also known as vector hydrophone for underwater applications) arrays are widely used. Most of the acoustic vector sensor array signal processing methods presume the minimum spacing between two adjacent sensors or sensor components to be within a half-wavelength in order to avoid azimuth–elevation angle estimation aliasing. This would limit the effective array aperture, thereby reducing the potential estimation accuracy. Furthermore, they are unapplicable to the underdetermined scenarios, where the number of sources exceeds that of sensor components. Exploiting the recently proposed nested array concept, we present a new type of nested array, termed as Sparse Nested spatially spread Square Acoustic Vector sensor Array (SNSAVA) to realize underdetermined 2-D direction finding with increased estimation accuracy. In SNSAVA, interspacing of two sensors and two components of a sensor can be spread to be much higher than a half-wavelength so that the effective array aperture will be significantly extended. An unambiguous angle estimation method is further derived to make this fully sparse array configuration practically feasible. Performance studies focused on underdetermined high-accuracy azimuth–elevation angle estimation are provided via numerical examples. The estimation performance for the SNSAVA is also compared with that of the nested acoustic vector sensor arrays, proposed in [33], and with the Cramér–Rao bound.

中文翻译:

用于高精度欠定测向的具有空间扩展方形声学矢量传感器的稀疏嵌套阵列

在声学传感系统中,声矢量传感器(也称为水下应用的矢量水听器)阵列被广泛使用。大多数声学矢量传感器阵列信号处理方法假定两个相邻传感器或传感器组件之间的最小间距在半波长内,以避免方位角 - 仰角估计混叠。这将限制有效阵列孔径,从而降低潜在的估计精度。此外,它们不适用于源数量超过传感器组件数量的不确定场景。利用最近提出的嵌套数组概念,我们提出了一种新型的嵌套数组,称为稀疏嵌套空间传播方形声学矢量传感器阵列 (SNSAVA),以实现欠定二维测向,并提高估计精度。在 SNSAVA 中,两个传感器和一个传感器的两个组件的间距可以扩展到远高于半波长,从而显着扩展有效阵列孔径。进一步推导出明确的角度估计方法,使这种完全稀疏的阵列配置切实可行。通过数值示例提供了专注于欠定高精度方位角 - 仰角估计的性能研究。SNSAVA 的估计性能也与 [33] 中提出的嵌套声学矢量传感器阵列的估计性能以及 Cramér-Rao 边界进行了比较。两个传感器和传感器的两个组件的间距可以扩展到远高于半波长,从而显着扩展有效阵列孔径。进一步推导出明确的角度估计方法,使这种完全稀疏的阵列配置切实可行。通过数值示例提供了专注于欠定高精度方位角 - 仰角估计的性能研究。SNSAVA 的估计性能也与 [33] 中提出的嵌套声学矢量传感器阵列的估计性能以及 Cramér-Rao 边界进行了比较。两个传感器和传感器的两个组件的间距可以扩展到远高于半波长,从而显着扩展有效阵列孔径。进一步推导出明确的角度估计方法,使这种完全稀疏的阵列配置切实可行。通过数值示例提供了专注于欠定高精度方位角 - 仰角估计的性能研究。SNSAVA 的估计性能也与 [33] 中提出的嵌套声学矢量传感器阵列的估计性能以及 Cramér-Rao 边界进行了比较。进一步推导出明确的角度估计方法,使这种完全稀疏的阵列配置切实可行。通过数值示例提供了专注于欠定高精度方位角 - 仰角估计的性能研究。SNSAVA 的估计性能也与 [33] 中提出的嵌套声学矢量传感器阵列的估计性能以及 Cramér-Rao 边界进行了比较。进一步推导出明确的角度估计方法,使这种完全稀疏的阵列配置切实可行。通过数值示例提供了专注于欠定高精度方位角 - 仰角估计的性能研究。SNSAVA 的估计性能还与 [33] 中提出的嵌套声学矢量传感器阵列的估计性能以及 Cramér-Rao 界限进行了比较。
更新日期:2021-02-08
down
wechat
bug