当前位置: X-MOL 学术Bioelectrochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strobe photography mapping of cell membrane potential with nanosecond resolution
Bioelectrochemistry ( IF 4.8 ) Pub Date : 2021-08-13 , DOI: 10.1016/j.bioelechem.2021.107929
Allen S Kiester 1 , Bennett L Ibey 1 , Zachary N Coker 2 , Andrei G Pakhomov 3 , Joel N Bixler 1
Affiliation  

The ability to directly observe membrane potential charging dynamics across a full microscopic field of view is vital for understanding interactions between a biological system and a given electrical stimulus. Accurate empirical knowledge of cell membrane electrodynamics will enable validation of fundamental hypotheses posited by the single shell model, which includes the degree of voltage change across a membrane and cellular sensitivity to external electric field non-uniformity and directionality. To this end, we have developed a high-speed strobe microscopy system with a time resolution of ~ 6 ns that allows us to acquire time-sequential data for temporally repeatable events (non-injurious electrostimulation). The imagery from this system allows for direct comparison of membrane voltage change to both computationally simulated external electric fields and time-dependent membrane charging models. Acquisition of a full microscope field of view enables the selection of data from multiple cell locations experiencing different electrical fields in a single image sequence for analysis. Using this system, more realistic membrane parameters can be estimated from living cells to better inform predictive models. As a proof of concept, we present evidence that within the range of membrane conductivity used in simulation literature, higher values are likely more valid.



中文翻译:

具有纳秒分辨率的细胞膜电位频闪摄影图

在整个微观视野中直接观察膜电位充电动态的能力对于理解生物系统和给定电刺激之间的相互作用至关重要。细胞膜电动力学的准确经验知识将能够验证单壳模型提出的基本假设,其中包括跨膜电压变化的程度和细胞对外部电场不均匀性和方向性的敏感性。为此,我们开发了一种时间分辨率约为 6 ns 的高速频闪显微镜系统,使我们能够获取时间可重复事件(非伤害性电刺激)的时间序列数据。该系统的图像允许直接比较膜电压变化与计算模拟的外部电场和时间相关的膜充电模型。获得完整的显微镜视野,可以在单个图像序列中选择来自经历不同电场的多个细胞位置的数据进行分析。使用该系统,可以从活细胞估计更真实的膜参数,以更好地为预测模型提供信息。作为概念证明,我们提供的证据表明,在模拟文献中使用的膜电导率范围内,较高的值可能更有效。获得完整的显微镜视野,可以在单个图像序列中选择来自经历不同电场的多个细胞位置的数据进行分析。使用该系统,可以从活细胞估计更真实的膜参数,以更好地为预测模型提供信息。作为概念证明,我们提供的证据表明,在模拟文献中使用的膜电导率范围内,较高的值可能更有效。获得完整的显微镜视野,可以在单个图像序列中选择来自经历不同电场的多个细胞位置的数据进行分析。使用该系统,可以从活细胞估计更真实的膜参数,以更好地为预测模型提供信息。作为概念证明,我们提供的证据表明,在模拟文献中使用的膜电导率范围内,较高的值可能更有效。

更新日期:2021-08-23
down
wechat
bug