当前位置: X-MOL 学术Comp. Part. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Waterfall Algorithm as a tool of investigation the geometrical features of granular porous media
Computational Particle Mechanics ( IF 2.8 ) Pub Date : 2021-08-11 , DOI: 10.1007/s40571-021-00430-0
Wojciech Sobieski 1
Affiliation  

The paper describes the so-called Waterfall Algorithm, which may be used to calculate a set of parameters characterising the spatial structure of granular porous media, such as shift ratio, collision density ratio, consolidation ratio, path length and minimum tortuosity. The study is performed for 1800 different two-dimensional random pore structures. In each geometry, 100 individual paths are calculated. The impact of porosity and the particle size on the above-mentioned parameters is investigated. It was stated in the paper, that the minimum tortuosity calculated by the Waterfall Algorithm cannot be used directly as a representative tortuosity of pore channels in the Kozeny or the Carman meaning. However, it may be used indirect by making the assumption that a unambiguous relationship between the representative tortuosity and the minimum tortuosity exists. It was also stated, that the new parameters defined in the present study are sensitive on the porosity and the particle size and may be therefore applied as indicators of the geometry structure of granular media. The Waterfall Algorithm is compared with other methods of determining the tortuosity: A-Star Algorithm, Path Searching Algorithm, Random Walk technique, Path Tracking Method and the methodology of calculating the hydraulic tortuosity based on the Lattice Boltzmann Method. A very short calculation time is the main advantage of the Waterfall Algorithm, what meant, that it may be applied in a very large granular porous media.



中文翻译:

瀑布算法作为研究粒状多孔介质几何特征的工具

该论文描述了所谓的瀑布算法,该算法可用于计算一组表征颗粒多孔介质空间结构的参数,例如位移比、碰撞密度比、固结比、路径长度和最小曲折度。该研究针对 1800 种不同的二维随机孔隙结构进行。在每个几何图形中,计算了 100 条单独的路径。研究了孔隙率和粒度对上述参数的影响。论文中指出,瀑布算法计算出的最小曲折度不能直接作为Kozeny或Carman意义中孔隙通道的代表曲折度。然而,可以通过假设代表性曲折度和最小曲折度之间存在明确关系来间接使用它。还指出,本研究中定义的新参数对孔隙率和粒度敏感,因此可用作颗粒介质几何结构的指标。将瀑布算法与其他确定曲折度的方法进行了比较:A星算法、路径搜索算法、随机游走技术、路径跟踪法以及基于格子玻尔兹曼法的水力曲折度计算方法。非常短的计算时间是瀑布算法的主要优点,这意味着它可以应用于非常大的颗粒多孔介质。本研究中定义的新参数对孔隙率和粒度敏感,因此可用作颗粒介质几何结构的指标。将瀑布算法与其他确定曲折度的方法进行了比较:A星算法、路径搜索算法、随机游走技术、路径跟踪法以及基于格子玻尔兹曼法的水力曲折度计算方法。非常短的计算时间是瀑布算法的主要优点,这意味着它可以应用于非常大的颗粒多孔介质。本研究中定义的新参数对孔隙率和粒度敏感,因此可用作颗粒介质几何结构的指标。将瀑布算法与其他确定曲折度的方法进行了比较:A星算法、路径搜索算法、随机游走技术、路径跟踪法和基于格子玻尔兹曼法的水力曲折度计算方法。非常短的计算时间是瀑布算法的主要优点,这意味着它可以应用于非常大的颗粒多孔介质。将瀑布算法与其他确定曲折度的方法进行了比较:A星算法、路径搜索算法、随机游走技术、路径跟踪法以及基于格子玻尔兹曼法的水力曲折度计算方法。非常短的计算时间是瀑布算法的主要优点,这意味着它可以应用于非常大的颗粒多孔介质。将瀑布算法与其他确定曲折度的方法进行了比较:A星算法、路径搜索算法、随机游走技术、路径跟踪法以及基于格子玻尔兹曼法的水力曲折度计算方法。非常短的计算时间是瀑布算法的主要优点,这意味着它可以应用于非常大的颗粒多孔介质。

更新日期:2021-08-12
down
wechat
bug