当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emergence of robust self-organized undulatory swimming based on local hydrodynamic force sensing
Science Robotics ( IF 25.0 ) Pub Date : 2021-08-11 , DOI: 10.1126/scirobotics.abf6354
Robin Thandiackal 1, 2 , Kamilo Melo 1, 3 , Laura Paez 1 , Johann Herault 4 , Takeshi Kano 5 , Kyoichi Akiyama 5 , Frédéric Boyer 4 , Dimitri Ryczko 6 , Akio Ishiguro 5 , Auke J Ijspeert 1
Affiliation  

Undulatory swimming represents an ideal behavior to investigate locomotion control and the role of the underlying central and peripheral components in the spinal cord. Many vertebrate swimmers have central pattern generators and local pressure-sensitive receptors that provide information about the surrounding fluid. However, it remains difficult to study experimentally how these sensors influence motor commands in these animals. Here, using a specifically designed robot that captures the essential components of the animal neuromechanical system and using simulations, we tested the hypothesis that sensed hydrodynamic pressure forces can entrain body actuation through local feedback loops. We found evidence that this peripheral mechanism leads to self-organized undulatory swimming by providing intersegmental coordination and body oscillations. Swimming can be redundantly induced by central mechanisms, and we show that, therefore, a combination of both central and peripheral mechanisms offers a higher robustness against neural disruptions than any of them alone, which potentially explains how some vertebrates retain locomotor capabilities after spinal cord lesions. These results broaden our understanding of animal locomotion and expand our knowledge for the design of robust and modular robots that physically interact with the environment.



中文翻译:

基于局部水动力传感的鲁棒自组织波动游泳的出现

波动游泳代表了研究运动控制和脊髓中潜在中枢和外周成分的作用的理想行为。许多脊椎动物游泳者都有中央模式发生器和局部压力敏感受体,可提供有关周围液体的信息。然而,通过实验研究这些传感器如何影响这些动物的运动命令仍然很困难。在这里,我们使用专门设计的机器人来捕捉动物神经机械系统的基本组成部分并使用模拟,测试了感知到的流体动力压力可以通过局部反馈回路带动身体驱动的假设。我们发现证据表明,这种外围机制通过提供节间协调和身体振荡导致自组织波动游泳。游泳可以由中枢机制过度诱导,因此我们表明,中枢和外周机制的结合提供了比单独使用任何一种机制更高的抵抗神经破坏的鲁棒性,这可能解释了一些脊椎动物在脊髓损伤后如何保持运动能力. 这些结果拓宽了我们对动物运动的理解,并扩展了我们设计与环境物理交互的坚固和模块化机器人的知识。

更新日期:2021-08-12
down
wechat
bug