当前位置: X-MOL 学术Nucl. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamical System Scaling Application to Zircaloy Cladding Thermal Response During Reactivity-Initiated Accident Experiment
Nuclear Science and Engineering ( IF 1.2 ) Pub Date : 2021-08-11 , DOI: 10.1080/00295639.2021.1955591
Alexander Duenas 1, 2 , Daniel Wachs 2 , Guillaume Mignot 1 , Jose N. Reyes 3 , Qiao Wu 1 , Wade Marcum 1
Affiliation  

Abstract

New fuel design and development currently require 20 to 25 years to be qualified for use by the nuclear power industry. The thermal-hydraulics community has taken advantage of scaling theory to design reduced-scale experiments that correctly preserve dominant key phenomena while quantifying distorted phenomena. These techniques can be leveraged in the design and analysis of fuel performance experiments to help reduce the timeline associated with fuel design and development. This study uses the Dynamical System Scaling (DSS) method to analyze cladding temperature data from the recent SETH-C experiment in the Transient Reactor Test Facility (TREAT) and accompanying BISON simulations to assess dynamic distortions occurring throughout the fast power excursion transient. The DSS analysis revealed that on the cooldown from peak cladding temperature, the fuel radial power profile is the most sensitive modeling parameter, with a heterogeneous radial peaking factor corresponding to the lowest distortion compared to a uniform energy deposition. For the heatup to PCT, the heterogeneous radial power profile corresponded to the shortest process action. Last, for the heatup to PCT, the gap conductance model sensitivity was quantified using process actionsm and showed that the default light water reactor gap conductance model corresponded to the longest process action.



中文翻译:

反应性引发事故实验中锆合金包层热响应的动态系统缩放应用

摘要

新燃料的设计和开发目前需要 20 到 25 年才能获得核电行业使用的资格。热工水力学界利用比例理论设计了缩小比例的实验,在量化扭曲现象的同时正确保留主要的关键现象。这些技术可用于燃料性能实验的设计和分析,以帮助缩短与燃料设计和开发相关的时间线。本研究使用动态系统缩放 (DSS) 方法来分析最近在瞬态反应堆测试设施 (TREAT) 中进行的 SETH-C 实验的包层温度数据以及伴随的 BISON 模拟,以评估在整个快速功率偏移瞬态过程中发生的动态失真。DSS 分析表明,在从峰值包层温度冷却时,燃料径向功率分布是最敏感的建模参数,与均匀能量沉积相比,具有对应于最低失真的不均匀径向峰值因子。对于 PCT 的加热,异质径向功率分布对应于最短的过程动作。最后,对于 PCT 的加热,间隙电导模型的敏感性使用过程动作进行量化,并表明默认的轻水反应堆间隙电导模型对应于最长的过程动作。

更新日期:2021-08-11
down
wechat
bug