当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crashworthiness improvements of multi-cell thin-walled tubes through lattice structure enhancements
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2021-08-11 , DOI: 10.1016/j.ijmecsci.2021.106731
Hu Liu 1 , Zheng Xian Caleb Chng 1 , Guangjian Wang 1, 2 , Bing Feng Ng 1
Affiliation  

Taking advantage of multi-cell tubes and lattice structures on improving crashworthiness performances, a novel multi-cell thin-walled tube filled with uniform and graded lattice structures is explored in this paper. The body-centered cubic lattice structure is employed as the uniform lattice filler, while the graded lattice filler is constructed by varying the diameter of lattice rods in each layer. Several geometric parameters are investigated numerically, which include the cell number of tube, the dimension of tube and lattice, the height-to-width ratio of the enhanced tube, and the configuration of graded lattices. These parameters are then compared for their crushing load-displacement curves, deformation modes, and energy-absorbing mechanisms. It is observed that the multi-cell tubes exhibit significant improvements to the absorbed energy and crushing force efficiency over the single-cell tubes. In addition, the specific energy absorption (SEA) of the hybrid multi-cell tube structures is improved by 78.6% with respect to the sum of its individual constituents. Furthermore, the multi-cell tube structure filled with graded lattices can present larger energy-absorbing capacity than its uniform lattice counterpart, and the strong end at its top provides better SEA performance. Overall, the hybrid lattice-enhanced tube structure provides an optimal strategy for the crashworthiness design of multi-cell tubes, which can serve as a potential candidate for future crashworthiness applications.



中文翻译:

通过晶格结构增强提高多单元薄壁管的耐撞性

本文利用多单元管和晶格结构在提高耐撞性能方面的优势,探索了一种填充均匀渐变晶格结构的新型多单元薄壁管。采用体心立方晶格结构作为均匀晶格填料,而梯度晶格填料是通过改变每层晶格棒的直径来构建的。对几个几何参数进行了数值研究,包括管的单元数、管和点阵的尺寸、增强管的高宽比和梯度点阵的配置。然后比较这些参数的破碎载荷-位移曲线、变形模式和能量吸收机制。据观察,与单细胞管相比,多细胞管在吸收能量和压碎力效率方面表现出显着改善。此外,混合多单元管结构的比能量吸收 (SEA) 相对于其各个成分的总和提高了 78.6%。此外,填充渐变晶格的多单元管结构比其均匀晶格对应物具有更大的能量吸收能力,并且其顶部的强端提供更好的 SEA 性能。总体而言,混合晶格增强管结构为多单元管的耐撞性设计提供了最佳策略,可作为未来耐撞性应用的潜在候选者。混合多单元管结构的比能量吸收 (SEA) 相对于其各个成分的总和提高了 78.6%。此外,填充渐变晶格的多单元管结构比其均匀晶格对应物具有更大的能量吸收能力,并且其顶部的强端提供更好的 SEA 性能。总体而言,混合晶格增强管结构为多单元管的耐撞性设计提供了最佳策略,可作为未来耐撞性应用的潜在候选者。混合多单元管结构的比能量吸收 (SEA) 相对于其各个成分的总和提高了 78.6%。此外,填充渐变晶格的多单元管结构比其均匀晶格对应物具有更大的能量吸收能力,并且其顶部的强端提供更好的 SEA 性能。总体而言,混合晶格增强管结构为多单元管的耐撞性设计提供了最佳策略,可作为未来耐撞性应用的潜在候选者。其顶部的强端提供了更好的 SEA 性能。总体而言,混合晶格增强管结构为多单元管的耐撞性设计提供了最佳策略,可作为未来耐撞性应用的潜在候选者。其顶部的强端提供了更好的 SEA 性能。总体而言,混合晶格增强管结构为多单元管的耐撞性设计提供了最佳策略,可作为未来耐撞性应用的潜在候选者。

更新日期:2021-08-21
down
wechat
bug