当前位置: X-MOL 学术Rock Mech. Rock Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermomechanics for Geological, Civil Engineering and Geodynamic Applications: Numerical Implementation and Application to the Bentheim Sandstone
Rock Mechanics and Rock Engineering ( IF 5.5 ) Pub Date : 2021-08-05 , DOI: 10.1007/s00603-021-02582-0
Antoine B. Jacquey 1 , Klaus Regenauer-Lieb 2 , Mauro Cacace 3
Affiliation  

Observations of the mechanical behavior of porous rocks subject to external loading indicate the existence of complex dependencies on the level of confining pressure, fluid pressure and rate of deformation. Due to the heterogeneous nature of porous rocks, their macroscopic response is the result of underlying microscopic processes which can alter the microstructural organization of the grain–pore network. The impacts of the multiscale and poromechanical behavior of geomaterials are relevant for a number of applications ranging from civil engineering, reservoir engineering, geological and geodynamic. The use of thermodynamic-consistent approaches to construct constitutive laws which span a large range of time scales is particularly relevant in this context. In this two-part contribution, we present extensions of the thermomechanics theory to account for the poromechanics of path- and rate-dependent critical state line models and we cover the relevance of this thermodynamic-consistent model for civil engineering, geological and geodynamic applications. In this second paper, we extend the thermomechanics theory to account for the poromechanics of geomaterials in agreement with the theory of poroelasticity and considering in addition dissipative inelastic processes. We illustrate using experimental data how the thermodynamic-consistent model derived can account for the macroscopic mechanical and porous responses in triaxial loading experiments. We particularly focus on the transition from dilation to compression regime with confining pressure and the resulting localization styles ranging from shear dilation to compaction bands.



中文翻译:

地质、土木工程和地球动力学应用的热力学:在 Bentheim 砂岩中的数值实现和应用

对受外部载荷作用的多孔岩石力学行为的观察表明,存在与围压、流体压力和变形速率水平的复杂相关性。由于多孔岩石的非均质性,它们的宏观响应是潜在微观过程的结果,这些过程可以改变颗粒-孔隙网络的微观结构组织。地质材料的多尺度和多孔力学行为的影响与土木工程、油藏工程、地质和地球动力学等许多应用相关。使用热力学一致的方法来构建跨越大范围时间尺度的本构定律在这种情况下尤其重要。在这个由两部分组成的贡献中,我们提出了热力学理论的扩展,以解释与路径和速率相关的临界状态线模型的孔隙力学,我们涵盖了这种热力学一致模型与土木工程、地质和地球动力学应用的相关性。在第二篇论文中,我们扩展了热力学理论以解释与多孔弹性理论一致的地质材料的多孔力学,并另外考虑了耗散非弹性过程。我们使用实验数据说明导出的热力学一致模型如何解释三轴加载实验中的宏观机械和多孔响应。我们特别关注从膨胀到具有围压的压缩状态的过渡,以及由此产生的从剪切膨胀到压实带的定位方式。

更新日期:2021-08-10
down
wechat
bug