当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Geometric Control of Universal Hydrodynamic Flow in a Two-Dimensional Electron Fluid
Physical Review X ( IF 11.6 ) Pub Date : 2021-08-06 , DOI: 10.1103/physrevx.11.031030
Aydın Cem Keser , Daisy Q. Wang , Oleh Klochan , Derek Y. H. Ho , Olga A. Tkachenko , Vitaly A. Tkachenko , Dimitrie Culcer , Shaffique Adam , Ian Farrer , David A. Ritchie , Oleg P. Sushkov , Alexander R. Hamilton

Fluid dynamics is one of the cornerstones of modern physics and has recently found applications in the transport of electrons in solids. In most solids, electron transport is dominated by extrinsic factors, such as sample geometry and scattering from impurities. However, in the hydrodynamic regime, Coulomb interactions transform the electron motion from independent particles to the collective motion of a viscous “electron fluid.” The fluid viscosity is an intrinsic property of the electron system, determined solely by the electron-electron interactions. Resolving the universal intrinsic viscosity is challenging, as it affects the resistance only through interactions with the sample boundaries, whose roughness not only is unknown but also varies from device to device. Here, we eliminate all unknown parameters by fabricating samples with smooth sidewalls to achieve the perfect slip boundary condition, which has been elusive in both molecular fluids and electronic systems. We engineer the device geometry to create viscous dissipation and reveal the true intrinsic hydrodynamic properties of a 2D system. We observe a clear transition from ballistic to hydrodynamic electron motion, driven by both temperature and magnetic field. We directly measure the viscosity and electron-electron scattering lifetime (the Fermi quasiparticle lifetime) over a wide temperature range without fitting parameters and show they have a strong dependence on electron density that cannot be explained by conventional theories based on the random phase approximation.

中文翻译:

二维电子流体中通用流体动力流动的几何控制

流体动力学是现代物理学的基石之一,最近在固体中的电子传输中得到了应用。在大多数固体中,电子传输受外在因素支配,例如样品几何形状和杂质散射。然而,在流体动力学状态下,库仑相互作用将电子运动从独立粒子转变为粘性“电子流体”的集体运动。流体粘度是电子系统的固有特性,仅由电子-电子相互作用决定。解决通用特性粘度具有挑战性,因为它仅通过与样品边界的相互作用来影响电阻,其粗糙度不仅未知,而且因设备而异。这里,我们通过制造具有光滑侧壁的样品来消除所有未知参数,以实现完美的滑动边界条件,这在分子流体和电子系统中都是难以捉摸的。我们设计了设备几何结构以产生粘性耗散并揭示 2D 系统真正的内在流体动力学特性。我们观察到由温度和磁场驱动的从弹道运动到流体动力学电子运动的明显转变。我们在没有拟合参数的情况下直接测量了很宽温度范围内的粘度和电子-电子散射寿命(费米准粒子寿命),并表明它们对电子密度有很强的依赖性,这是基于随机相位近似的传统理论无法解释的。这在分子流体和电子系统中都是难以捉摸的。我们设计了设备几何结构以产生粘性耗散并揭示 2D 系统真正的内在流体动力学特性。我们观察到由温度和磁场驱动的从弹道运动到流体动力学电子运动的明显转变。我们在没有拟合参数的情况下直接测量了很宽温度范围内的粘度和电子-电子散射寿命(费米准粒子寿命),并表明它们对电子密度有很强的依赖性,这是基于随机相位近似的传统理论无法解释的。这在分子流体和电子系统中都是难以捉摸的。我们设计了设备几何结构以产生粘性耗散并揭示 2D 系统真正的内在流体动力学特性。我们观察到由温度和磁场驱动的从弹道运动到流体动力学电子运动的明显转变。我们在没有拟合参数的情况下直接测量了很宽温度范围内的粘度和电子-电子散射寿命(费米准粒子寿命),并表明它们对电子密度有很强的依赖性,这是基于随机相位近似的传统理论无法解释的。我们观察到由温度和磁场驱动的从弹道运动到流体动力学电子运动的明显转变。我们在没有拟合参数的情况下直接测量了很宽温度范围内的粘度和电子-电子散射寿命(费米准粒子寿命),并表明它们对电子密度有很强的依赖性,这是基于随机相位近似的传统理论无法解释的。我们观察到由温度和磁场驱动的从弹道运动到流体动力学电子运动的明显转变。我们在没有拟合参数的情况下直接测量了很宽温度范围内的粘度和电子-电子散射寿命(费米准粒子寿命),并表明它们对电子密度有很强的依赖性,这是基于随机相位近似的传统理论无法解释的。
更新日期:2021-08-07
down
wechat
bug