当前位置: X-MOL 学术JACS Au › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmonic Imaging of Tuning Electron Tunneling Mediated by a Molecular Monolayer
JACS Au ( IF 8.5 ) Pub Date : 2021-08-05 , DOI: 10.1021/jacsau.1c00292
Zixiao Wang 1 , Ruihong Liu 1, 2 , Hong-Yuan Chen 1 , Hui Wang 1
Affiliation  

Probing and tuning the electron tunneling in metal electrode–insulator–metal nanoparticle systems provide a unique vision for understanding the fundamental mechanism of electrochemistry and broadening the horizon in practical applications of molecular electronics in many electrochemical systems. Here we report a plasmonic imaging technique to monitor the local double-layer charging of individual Au nanoparticles deposited on gold electrode separated by monolayer of n-alkanethiol molecules. The thickness of molecular monolayer tunes the tunneling kinetics and conductivity, which predicts the heterogeneous behavior on the modified electrode surface for different electrochemical systems. We studied the distance dependence of the electron tunneling and double layer charging processes by a plasmonic-based electrical impedance microscopy. By performing fast Fourier transform analysis of the recorded plasmonic image sequences, we can quantify the interfacial impedance of single nanoparticles and the tunneling decay constant of molecular layer. We further observed the electron neutralization dynamics during single-nanoparticle collisions on different surfaces. This optical readout of electron tunneling demonstrates an imaging approach to determine the electrical properties of metal electrode–insulator–metal nanoparticle systems, which include the electron tunneling mechanism and local impedance.

中文翻译:


单分子层介导的调谐电子隧道的等离子体成像



探测和调整金属电极-绝缘体-金属纳米颗粒系统中的电子隧道效应,为理解电化学的基本机制和拓宽分子电子学在许多电化学系统中的实际应用的视野提供了独特的视野。在这里,我们报告了一种等离子体成像技术,用于监测沉积在由单层烷硫醇分子分隔的金电极上的单个金纳米颗粒的局部双层充电。单分子层的厚度调节隧道动力学和电导率,从而预测不同电化学系统的修饰电极表面的异质行为。我们通过基于等离子体的电阻抗显微镜研究了电子隧道和双层充电过程的距离依赖性。通过对记录的等离子体图像序列进行快速傅里叶变换分析,我们可以量化单个纳米颗粒的界面阻抗和分子层的隧道衰减常数。我们进一步观察了单纳米粒子在不同表面碰撞期间的电子中和动力学。这种电子隧道的光学读数展示了一种确定金属电极-绝缘体-金属纳米颗粒系统电学特性的成像方法,其中包括电子隧道机制和局部阻抗。
更新日期:2021-08-05
down
wechat
bug