当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Nickel-Decorated Carbon Flower/Sulfur Cathode for Lean-Electrolyte Lithium–Sulfur Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-08-04 , DOI: 10.1002/aenm.202101449
Yuchi Tsao 1 , Huaxin Gong 2 , Shucheng Chen 2 , Gan Chen 3 , Yunzhi Liu 3 , Theodore Z. Gao 3 , Yi Cui 3, 4 , Zhenan Bao 2
Affiliation  

Lithium–sulfur (Li–S) batteries involve a reversible conversion reaction between sulfur and lithium sulfide (Li2S) via a series of soluble lithium polysulfide intermediates (LiPSs), enabling a high theoretical specific capacity of 1675 mAh g–1. However, this process exhibits large polarization and low sulfur utilization and suffers critical capacity fade. The primary approach to tackle the problem has so far been to infiltrate sulfur into nanostructured carbon. However, most studies using porous carbon as host materials have tested with high electrolyte to sulfur ratios (E/S) (generally > 15 µL mg−1) that compromise the cell-level energy density. Here, a flower-shaped porous carbon structure with nickel nanoparticles that can address the problems discussed above is designed. First, the 3D flower-shaped carbon structure enables short ionic transport lengths. Second, the small pore diameters <10 nm and high specific surface areas > 3300 m2 g−1 with sufficient pore volume are ideal for charging performance for low E/S ratios. Finally, Ni nanoparticles are employed onto the flower-shaped network to improve the reaction kinetics. Collectively, it is successfully demonstrated that the batteries with a high mass loading of 5 mg cm−2 and a 5 µL mg−1 E/S ratio can retain cycle retention of 70% after 150 cycles.

中文翻译:

一种用于贫电解质锂硫电池的镍装饰碳花/硫阴极

锂硫 (Li-S) 电池通过一系列可溶性多硫化锂中间体 (LiPSs)在硫和硫化锂 (Li 2 S)之间发生可逆转化反应,从而实现 1675 mAh g –1的高理论比容量。然而,该工艺表现出大极化和低硫利用率,并遭受临界容量衰减。迄今为止,解决这个问题的主要方法是将硫渗透到纳米结构的碳中。然而,大多数使用多孔碳作为主体材料的研究都使用高电解质硫比 (E/S)(通常 > 15 µL mg -1),这会损害电池级的能量密度。在这里,设计了一种可以解决上述问题的带有镍纳米颗粒的花形多孔碳结构。首先,3D 花形碳结构实现了较短的离子传输长度。其次,具有足够孔体积的小孔径<10 nm 和高比表面积> 3300 m 2 g -1是低E/S 比充电性能的理想选择。最后,Ni纳米颗粒被用于花形网络以改善反应动力学。总的来说,成功证明了具有 5 mg cm -2 的高质量负载和 5 µL mg -1 E/S 比的电池在 150 次循环后可以保持 70% 的循环保持率。
更新日期:2021-09-23
down
wechat
bug