当前位置: X-MOL 学术Prog. Energy Combust. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries
Progress in Energy and Combustion Science ( IF 29.5 ) Pub Date : 2021-08-05 , DOI: 10.1016/j.pecs.2021.100953
Xianke Lin 1 , Kavian Khosravinia 1 , Xiaosong Hu 2 , Ju Li 3 , Wei Lu 4
Affiliation  

The success of electric vehicles depends largely on energy storage systems. Lithium-ion batteries have many important properties to meet a wide range of requirements, especially for the development of electric mobility. However, there are still many issues facing lithium-ion batteries. One of the issues is the deposition of metallic lithium on the anode graphite surface under fast charging or low-temperature conditions. Lithium plating reduces the battery life drastically and limits the fast-charging capability. In severe cases, lithium plating forms lithium dendrite, which penetrates the separator and causes internal short. Significant research efforts have been made over the last two decades to understand the lithium plating mechanisms. However, the lithium plating mechanisms have not yet been fully elucidated. Meanwhile, another challenge in the development of fast charging technologies is to identify degradation mechanisms in real-time. This includes real-time detection of lithium plating while the battery is being charged. Accurate detection and prediction of lithium plating are critical for fast charging technologies. Many approaches have been proposed to mitigate lithium plating, such as adopting advanced material components and introducing hybrid and optimized charging protocols. Nevertheless, most detection techniques and mitigation strategies are only used for fundamental research with limited possibilities in large-scale applications. To date, there is still a lack of a comprehensive review of lithium plating, reflecting state of the art and elucidating potential future research directions. Therefore, in this article, we provide a snapshot of recent advances in lithium plating research in terms of mechanism, detection, and mitigation to fill this gap and incentivize more innovative thoughts and techniques. In the present study, the mechanisms of lithium plating and approaches used to characterize and detect it in different applications are carefully reviewed. This review also provides a summary of recent advances in model-based approaches to predict lithium plating. Based on the gathered information, the advantages and drawbacks of each model are compared. The mitigation strategies for suppressing lithium plating at different levels are studied. Finally, we highlighted some of the remaining technical challenges and potential solutions for future advancement.



中文翻译:

锂离子电池中的锂电镀机制、检测和缓解

电动汽车的成功很大程度上取决于储能系统。锂离子电池具有许多重要的特性,可以满足广泛的要求,尤其是对于电动汽车的发展。然而,锂离子电池仍面临许多问题。问题之一是在快速充电或低温条件下金属锂在阳极石墨表面的沉积。锂电镀会大大缩短电池寿命并限制快速充电能力。在严重的情况下,锂电镀形成锂枝晶,它会穿透隔膜并导致内部短路。在过去的二十年里,为了了解锂电镀机制,已经进行了大量的研究工作。然而,锂电镀机制尚未完全阐明。同时,快速充电技术发展的另一个挑战是实时识别退化机制。这包括在电池充电时实时检测锂电镀。准确检测和预测锂电镀对于快速充电技术至关重要。已经提出了许多方法来减轻锂电镀,例如采用先进的材料组件并引入混合和优化的充电协议。尽管如此,大多数检测技术和缓解策略仅用于基础研究,在大规模应用中的可能性有限。迄今为止,仍然缺乏对锂电镀的全面审查,反映了最先进的技术并阐明了未来的潜在研究方向。因此,在本文中,我们简要介绍了锂电镀研究在机制、检测和缓解方面的最新进展,以填补这一空白并激励更多创新思想和技术。在本研究中,仔细审查了锂电镀的机制以及在不同应用中用于表征和检测锂的方法。本综述还总结了基于模型的方法来预测锂电镀的最新进展。根据收集到的信息,比较每个模型的优缺点。研究了在不同水平上抑制锂电镀的缓解策略。最后,我们强调了一些剩余的技术挑战和未来发展的潜在解决方案。和缓解措施以填补这一空白并激励更多创新思想和技术。在本研究中,仔细审查了锂电镀的机制以及在不同应用中用于表征和检测锂的方法。本综述还总结了基于模型的方法来预测锂电镀的最新进展。根据收集到的信息,比较每个模型的优缺点。研究了在不同水平上抑制锂电镀的缓解策略。最后,我们强调了一些剩余的技术挑战和未来发展的潜在解决方案。和缓解措施以填补这一空白并激励更多创新思想和技术。在本研究中,仔细审查了锂电镀的机制以及在不同应用中用于表征和检测锂的方法。本综述还总结了基于模型的方法来预测锂电镀的最新进展。根据收集到的信息,比较每个模型的优缺点。研究了在不同水平上抑制锂电镀的缓解策略。最后,我们强调了一些剩余的技术挑战和未来发展的潜在解决方案。本综述还总结了基于模型的方法来预测锂电镀的最新进展。根据收集到的信息,比较每个模型的优缺点。研究了在不同水平上抑制锂电镀的缓解策略。最后,我们强调了一些剩余的技术挑战和未来发展的潜在解决方案。本综述还总结了基于模型的方法来预测锂电镀的最新进展。根据收集到的信息,比较每个模型的优缺点。研究了在不同水平上抑制锂电镀的缓解策略。最后,我们强调了一些剩余的技术挑战和未来发展的潜在解决方案。

更新日期:2021-08-05
down
wechat
bug