当前位置: X-MOL 学术J. Photonics Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation on solar evaporation properties of nanofluids
Journal of Photonics for Energy ( IF 1.5 ) Pub Date : 2021-08-01 , DOI: 10.1117/1.jpe.11.034501
Huiling Duan 1 , Tong Ling 1 , Yujie Yan 1 , Yiding Wang 1
Affiliation  

The optical absorption and heat transfer properties of fluid can be improved by suspending nanoparticles in a base fluid. Due to the strong photothermal effect around nanoparticles, water around the particles evaporates when exposed to light. Therefore, nanofluids can be used as the working fluid of solar evaporation devices. The evaporation heat transfer model of the Ag nanofluid is established. The temperature distribution and vapor concentration distribution around nanofluids are simulated at low concentrated solar power. Effects of the particle size and volume concentration on the evaporation performance are analyzed. When the volume concentration is small (fv = 0.01 % ), the effect of particle size on evaporation is obvious, and the evaporation increases with the increase of particle size. When the particle radius R increases from 5 to 40 nm, the evaporation amount increases 17.8% from 0.0286 to 0.0337 g. For the nanofluids with smaller particle sizes (R < 20 nm), the evaporation tends to be stable with the increase of concentration, reaching about 0.0318 g. For the nanofluids with larger particle sizes (R = 40 nm), the evaporation decreases significantly with the increased concentration. When the volume concentration increases from 0.01% to 0.1%, the evaporation decreases from 0.0337 to 0.0288 g. Therefore, the particle size and volume concentration should be considered comprehensively when choosing nanofluids as evaporation working fluids. When the volume concentration is >0.05 % , the nanofluids with smaller particle sizes should be selected. We provide guidance for the utilization of nanofluids for solar evaporation.

中文翻译:

纳米流体太阳蒸发特性的数值研究

通过将纳米颗粒悬浮在基液中,可以改善流体的光吸收和传热性能。由于纳米颗粒周围的强烈光热效应,当暴露在光线下时,颗粒周围的水会蒸发。因此,纳米流体可作为太阳能蒸发装置的工作流体。建立了银纳米流体的蒸发传热模型。在低聚光太阳能下模拟纳米流体周围的温度分布和蒸汽浓度分布。分析了粒径和体积浓度对蒸发性能的影响。当体积浓度较小时(fv = 0.01 % ),粒径对蒸发量的影响明显,且蒸发量随着粒径的增加而增加。当粒子半径 R 从 5 nm 增加到 40 nm 时,蒸发量从0.0286g增加到0.0337g,增加了17.8%。对于粒径较小(R < 20 nm)的纳米流体,蒸发量随着浓度的增加趋于稳定,达到约0.0318 g。对于具有较大粒径(R = 40 nm)的纳米流体,蒸发量随着浓度的增加而显着降低。当体积浓度从 0.01% 增加到 0.1% 时,蒸发量从 0.0337 减少到 0.0288 g。因此,在选择纳米流体作为蒸发工质时,应综合考虑粒径和体积浓度。当体积浓度>0.05%时,应选择粒径较小的纳米流体。我们为利用纳米流体进行太阳能蒸发提供指导。0337 克。对于粒径较小(R < 20 nm)的纳米流体,蒸发量随着浓度的增加趋于稳定,达到约0.0318 g。对于具有较大粒径(R = 40 nm)的纳米流体,蒸发量随着浓度的增加而显着降低。当体积浓度从 0.01% 增加到 0.1% 时,蒸发量从 0.0337 减少到 0.0288 g。因此,在选择纳米流体作为蒸发工质时,应综合考虑粒径和体积浓度。当体积浓度>0.05%时,应选择粒径较小的纳米流体。我们为利用纳米流体进行太阳能蒸发提供指导。0337 克。对于粒径较小(R < 20 nm)的纳米流体,蒸发量随着浓度的增加趋于稳定,达到约0.0318 g。对于具有较大粒径(R = 40 nm)的纳米流体,蒸发量随着浓度的增加而显着降低。当体积浓度从 0.01% 增加到 0.1% 时,蒸发量从 0.0337 减少到 0.0288 g。因此,在选择纳米流体作为蒸发工质时,应综合考虑粒径和体积浓度。当体积浓度>0.05%时,应选择粒径较小的纳米流体。我们为利用纳米流体进行太阳能蒸发提供指导。随着浓度的增加蒸发量趋于稳定,达到0.0318g左右。对于具有较大粒径(R = 40 nm)的纳米流体,蒸发量随着浓度的增加而显着降低。当体积浓度从 0.01% 增加到 0.1% 时,蒸发量从 0.0337 减少到 0.0288 g。因此,在选择纳米流体作为蒸发工质时,应综合考虑粒径和体积浓度。当体积浓度>0.05%时,应选择粒径较小的纳米流体。我们为利用纳米流体进行太阳能蒸发提供指导。随着浓度的增加蒸发量趋于稳定,达到0.0318g左右。对于具有较大粒径(R = 40 nm)的纳米流体,蒸发量随着浓度的增加而显着降低。当体积浓度从 0.01% 增加到 0.1% 时,蒸发量从 0.0337 减少到 0.0288 g。因此,在选择纳米流体作为蒸发工质时,应综合考虑粒径和体积浓度。当体积浓度>0.05%时,应选择粒径较小的纳米流体。我们为利用纳米流体进行太阳能蒸发提供指导。当体积浓度从 0.01% 增加到 0.1% 时,蒸发量从 0.0337 减少到 0.0288 g。因此,在选择纳米流体作为蒸发工质时,应综合考虑粒径和体积浓度。当体积浓度>0.05%时,应选择粒径较小的纳米流体。我们为利用纳米流体进行太阳能蒸发提供指导。当体积浓度从 0.01% 增加到 0.1% 时,蒸发量从 0.0337 减少到 0.0288 g。因此,在选择纳米流体作为蒸发工质时,应综合考虑粒径和体积浓度。当体积浓度>0.05%时,应选择粒径较小的纳米流体。我们为利用纳米流体进行太阳能蒸发提供指导。
更新日期:2021-08-05
down
wechat
bug