当前位置: X-MOL 学术Bull. Earthquake Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fast simulation of railway bridge dynamics accounting for soil–structure interaction
Bulletin of Earthquake Engineering ( IF 4.6 ) Pub Date : 2021-08-03 , DOI: 10.1007/s10518-021-01191-0
P. Galvín 1, 2 , A. Romero 1 , E. Moliner 3 , M. D. Martínez-Rodrigo 3 , D. P. Connolly 4
Affiliation  

A novel numerical methodology is presented to solve the dynamic response of railway bridges under the passage of running trains, considering soil–structure interaction. It is advantageous compared to alternative approaches because it permits, (i) consideration of complex geometries for the bridge and foundations, (ii) simulation of stratified soils, and, (iii) solving the train-bridge dynamic problem at minimal computational cost. The approach uses sub-structuring to split the problem into two coupled interaction problems: the soil–foundation, and the soil–foundation–bridge systems. In the former, the foundation and surrounding soil are discretized with Finite Elements (FE), and padded with Perfectly Match Layers to avoid boundary reflections. Considering this domain, the equivalent frequency dependent dynamic stiffness and damping characteristics of the soil–foundation system are computed. For the second sub-system, the dynamic response of the structure under railway traffic is computed using a FE model with spring and dashpot elements at the support locations, which have the equivalent properties determined using the first sub-system. This soil–foundation–bridge model is solved using complex modal superposition, considering the equivalent dynamic stiffness and damping of the soil–foundation corresponding to each natural frequency. The proposed approach is then validated using both experimental measurements and an alternative Finite Element–Boundary Element (FE–BE) methodology. A strong match is found and the results discussed.



中文翻译:

考虑土-结构相互作用的铁路桥梁动力学快速模拟

提出了一种新的数值方法来求解列车通过时铁路桥梁的动力响应,考虑土-结构相互作用。与替代方法相比,它具有优势,因为它允许 (i) 考虑桥梁和地基的复杂几何形状,(ii) 模拟分层土壤,以及 (iii) 以最小的计算成本解决火车-桥梁动力学问题。该方法使用子结构化将问题分解为两个耦合的相互作用问题:土 - 地基和土 - 地基 - 桥梁系统。在前者中,地基和周围土壤用有限元 (FE) 离散化,并用完美匹配层填充以避免边界反射。考虑到这个域,计算土-基础系统的等效频率相关动态刚度和阻尼特性。对于第二个子系统,使用有限元模型计算铁路交通下结构的动态响应,在支撑位置具有弹簧和缓冲器元件,它们具有使用第一个子系统确定的等效属性。该土-地基-桥梁模型使用复模态叠加求解,考虑到与每个自然频率相对应的土-地基的等效动态刚度和阻尼。然后使用实验测量和替代有限元边界元 (FE-BE) 方法验证所提出的方法。找到强匹配并讨论结果。铁路交通下结构的动态响应是使用有限元模型计算的,在支撑位置具有弹簧和缓冲器元件,它们具有使用第一个子系统确定的等效属性。该土-地基-桥梁模型使用复模态叠加求解,考虑到与每个自然频率相对应的土-地基的等效动态刚度和阻尼。然后使用实验测量和替代有限元边界元 (FE-BE) 方法验证所提出的方法。找到强匹配并讨论结果。铁路交通下结构的动态响应是使用有限元模型计算的,在支撑位置具有弹簧和缓冲器元件,它们具有使用第一个子系统确定的等效属性。该土-地基-桥梁模型使用复模态叠加求解,考虑到与每个自然频率相对应的土-地基的等效动态刚度和阻尼。然后使用实验测量和替代有限元边界元 (FE-BE) 方法验证所提出的方法。找到强匹配并讨论结果。该土-地基-桥梁模型使用复模态叠加求解,考虑到与每个自然频率相对应的土-地基的等效动态刚度和阻尼。然后使用实验测量和替代有限元边界元 (FE-BE) 方法验证所提出的方法。找到强匹配并讨论结果。该土-地基-桥梁模型使用复模态叠加求解,考虑到与每个自然频率相对应的土-地基的等效动态刚度和阻尼。然后使用实验测量和替代有限元边界元 (FE-BE) 方法验证所提出的方法。找到强匹配并讨论结果。

更新日期:2021-08-03
down
wechat
bug