当前位置: X-MOL 学术Mol. Neurobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes
Molecular Neurobiology ( IF 4.6 ) Pub Date : 2021-08-03 , DOI: 10.1007/s12035-021-02484-w
Syed Faraz Kazim 1 , Christian A Bowers 1 , Chad D Cole 1 , Samantha Varela 2 , Zafar Karimov 3 , Erick Martinez 3 , Jonathan V Ogulnick 3 , Meic H Schmidt 1
Affiliation  

Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients’ studies.



中文翻译:

脊髓损伤后皮质脊髓运动回路的可塑性:利用神经可塑性改善功能结果

脊髓损伤 (SCI) 是一种毁灭性的疾病,影响着美国约 294,000 人和全球数百万人。皮质脊髓运动电路在控制熟练的运动以及计划和协调哺乳动物的运动中起着重要作用,并且可能被 SCI 损坏。虽然成人中枢神经系统中受损纤维的长距离轴突再生很少,但在实验性 SCI 模型中已经显示出大量的自发神经重组和备用皮质脊髓运动电路的可塑性,与功能恢复有关。有益地利用皮质脊髓运动电路的这种神经可塑性代表了一种非常有前途的治疗方法,可以改善 SCI 后的运动结果。迄今为止,已为此目的使用了几种不同的策略,包括神经调节(脊髓/脑刺激策略和脑机接口)、康复训练(针对活动依赖性可塑性)、干细胞和生物支架、神经再生/神经保护药物疗法和光基于光动力疗法(PDT)和光生物调节(PMBT)的疗法。本综述概述了 SCI 后皮质脊髓运动回路的自发重组和神经可塑性,并总结了在临床前动物模型和临床人类患者研究中用于有益地利用这种神经可塑性来恢复 SCI 后功能恢复的各种治疗方法。康复训练(针对活动依赖性可塑性)、干细胞和生物支架、神经再生/神经保护药物疗法以及光动力疗法(PDT)和光生物调节(PMBT)等基于光的疗法。本综述概述了 SCI 后皮质脊髓运动回路的自发重组和神经可塑性,并总结了在临床前动物模型和临床人类患者研究中用于有益地利用这种神经可塑性来恢复 SCI 后功能恢复的各种治疗方法。康复训练(针对活动依赖性可塑性)、干细胞和生物支架、神经再生/神经保护药物疗法以及光动力疗法(PDT)和光生物调节(PMBT)等基于光的疗法。本综述概述了 SCI 后皮质脊髓运动回路的自发重组和神经可塑性,并总结了在临床前动物模型和临床人类患者研究中用于有益地利用这种神经可塑性来恢复 SCI 后功能恢复的各种治疗方法。

更新日期:2021-08-03
down
wechat
bug