当前位置: X-MOL 学术arXiv.cs.RO › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neuromechanical model-based control of bi-lateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions
arXiv - CS - Robotics Pub Date : 2021-08-02 , DOI: arxiv-2108.00980
Guillaume Durandau, Wolfgang Rampeltshammer, Herman van der Kooij, Massimo Sartori

To enable the broad adoption of wearable robotic exoskeletons in medical and industrial settings, it is crucial they can effectively support large repertoires of movements. We propose a new human-machine interface to drive bilateral ankle exoskeletons during a range of 'unseen' walking conditions that were not used for establishing the control interface. The proposed approach uses person-specific neuromechanical models of the human body to estimate biological ankle torques in real-time from electromyograms (EMGS) and joint angles. A low-level controller based on a disturbance observer translates biological torque estimates into exoskeleton commands. We call this 'neuromechanical model-based control' (NMBC). NMBC enabled five individuals to voluntarily control exoskeletons across two walking speeds performed at three ground elevations with no need for predefined torque profiles, nor a prior chosen neuromuscular reflex rules, or state machines as common in literature. Furthermore, a single subject case study was carried out on a dexterous moonwalk task, showing reduction in muscular effort. NMBC enabled reducing biological ankle torques as well as eight ankle muscle EMGs both within (22% for the torque; 13% for the EMG) and between walking conditions (22% for the torque; 13% for the EMG) when compared to non-assisted conditions. Torque and EMG reduction in novel walking conditions indicated the exoskeleton operated symbiotically as an exomuscle controlled by the operator's neuromuscular system. This will open new avenues for systematic adoption of wearable robots in out-of-the-lab medical and occupational settings.

中文翻译:

基于神经力学模型的双侧踝外骨骼控制:步行条件下的生物关节扭矩和肌电图减少

为了在医疗和工业环境中广泛采用可穿戴机器人外骨骼,它们能够有效地支持大量运动是至关重要的。我们提出了一种新的人机界面,用于在一系列未用于建立控制界面的“看不见的”步行条件下驱动双侧脚踝外骨骼。所提出的方法使用人体特定的神经力学模型,根据肌电图 (EMGS) 和关节角度实时估计生物踝关节扭矩。基于干扰观察器的低级控制器将生物扭矩估计值转换为外骨骼命令。我们称之为“基于神经力学模型的控制”(NMBC)。NMBC 使五个人能够在三个地面高度执行的两种步行速度下自愿控制外骨骼,不需要预定义的扭矩曲线,也不需要事先选择的神经肌肉反射规则或文献中常见的状态机。此外,对灵巧的月球漫步任务进行了一个单一的主题案例研究,显示肌肉努力减少。NMBC 能够减少生物踝关节扭矩以及八个踝关节肌肉 EMG,与非步行条件相比(扭矩为 22%;EMG 为 13%)和步行条件之间(扭矩为 22%;EMG 为 13%)。辅助条件。在新的步行条件下扭矩和肌电图的减少表明外骨骼作为由操作者的神经肌肉系统控制的外骨骼共生运作。
更新日期:2021-08-03
down
wechat
bug