当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Multi-Scale Structural Engineering Strategy for High-Performance MXene Hydrogel Supercapacitor Electrode
Advanced Science ( IF 14.3 ) Pub Date : 2021-08-02 , DOI: 10.1002/advs.202101664
Xianwu Huang 1 , Jiahui Huang 1 , Dong Yang 1 , Peiyi Wu 1, 2
Affiliation  

MXenes as an emerging two-dimensional (2D) material have attracted tremendous interest in electrochemical energy-storage systems such as supercapacitors. Nevertheless, 2D MXene flakes intrinsically tend to lie flat on the substrate when self-assembling as electrodes, leading to the highly tortuous ion pathways orthogonal to the current collector and hindering ion accessibility. Herein, a facile strategy toward multi-scale structural engineering is proposed to fabricate high-performance MXene hydrogel supercapacitor electrodes. By unidirectional freezing of the MXene slurry followed by a designed thawing process in the sulfuric acid electrolyte, the hydrogel electrode is endowed with a three-dimensional (3D) open macrostructure impregnated with sufficient electrolyte and H+-intercalated microstructure, which provide abundant active sites for ion storage. Meanwhile, the ordered channels bring through-electrode ion and electron transportation pathways that facilitate electrolyte infiltration and mass exchange between electrolyte and electrode. Furthermore, this strategy can also be extended to the fabrication of a 3D-printed all-MXene micro-supercapacitor (MSC), delivering an ultrahigh areal capacitance of 2.0 F cm–2 at 1.2 mA cm–2 and retaining 1.2 F cm–2 at 60 mA cm–2 together with record-high energy density (0.1 mWh cm–2 at 0.38 mW cm–2).

中文翻译:

高性能 MXene 水凝胶超级电容器电极的多尺度结构工程策略

MXenes 作为一种新兴的二维 (2D) 材料引起了人们对超级电容器等电化学储能系统的极大兴趣。然而,当自组装为电极时,2D MXene 薄片本质上倾向于平放在基板上,导致与集电器正交的高度曲折的离子路径并阻碍离子可及性。在此,提出了一种面向多尺度结构工程的简便策略来制造高性能 MXene 水凝胶超级电容器电极。通过单向冷冻 MXene 浆料,然后在硫酸电解质中进行设计的解冻过程,水凝胶电极被赋予了三维(3D)开放宏观结构,浸渍有足够的电解质和 H +嵌入的微观结构,从而提供了丰富的活性位点用于离子存储。同时,有序通道带来了穿过电极的离子和电子传输路径,有利于电解质渗透以及电解质与电极之间的质量交换。此外,该策略还可以扩展到 3D 打印的全 MXene 微型超级电容器 (MSC) 的制造,在 1.2 mA cm –2下提供 2.0 F cm –2的超高面积电容,并保留 1.2 F cm –2 60 mA cm –2以及创纪录的高能量密度(0.1 mWh cm –2和 0.38 mW cm –2)。
更新日期:2021-09-22
down
wechat
bug