当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High Resolution Patterning of an Organic–Inorganic Photoresin for the Fabrication of Platinum Microstructures
Advanced Materials ( IF 27.4 ) Pub Date : 2021-08-01 , DOI: 10.1002/adma.202101992
Manuel Luitz 1 , Markus Lunzer 2 , Andreas Goralczyk 1 , Markus Mader 1 , Sagar Bhagwat 1 , Andreas Warmbold 3 , Dorothea Helmer 1, 3, 4 , Frederik Kotz 1, 3 , Bastian E Rapp 1, 3, 4
Affiliation  

Platinum (Pt) is an interesting material for many applications due to its high chemical resilience, outstanding catalytic activity, high electrical conductivity, and high melting point. However, microstructuring and especially 3D microstructuring of platinum is a complex process, based on expensive and specialized equipment often suffering from very slow processing speeds. In this work, organic–inorganic photoresins, which can be structured using direct optical lithography as well as two-photon lithography (TPL) with submicrometer resolution and high-throughput is presented. The printed structures are subsequently converted to high-purity platinum using thermal debinding of the binder and reduction of the salt. With this technique, complex 3D structures with a 3D resolution of 300 nm were fabricated. At a layer thickness of 35 nm, the patterns reach a high conductivity of 67% compared to bulk platinum. Microheaters, thermocouple sensors as well as a Lab-on-a-Chip system are presented as exemplary applications. This technology will enable a broad range of application from electronics, sensing and heating elements to 3D photonics and metamaterials.

中文翻译:

用于制造铂微结构的有机-无机光树脂的高分辨率图案化

铂 (Pt) 因其高化学弹性、出色的催化活性、高导电性和高熔点而成为许多应用的有趣材料。然而,铂的微结构化,尤其是 3D 微结构化是一个复杂的过程,基于昂贵且专业的设备,通常加工速度非常慢。在这项工作中,提出了有机-无机光树脂,它可以使用直接光学光刻和双光子光刻 (TPL) 进行结构化,具有亚微米分辨率和高通量。随后使用粘合剂的热脱脂和盐的还原将印刷结构转化为高纯度铂。使用这种技术,制造了具有 300 nm 3D 分辨率的复杂 3D 结构。层厚为 35 nm 时,与大块铂相比,图案达到了 67% 的高电导率。微型加热器、热电偶传感器以及芯片实验室系统作为示例性应用提供。这项技术将实现从电子、传感和加热元件到 3D 光子学和超材料的广泛应用。
更新日期:2021-09-14
down
wechat
bug