当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Methane release from carbonate rock formations in the Siberian permafrost area during and after the 2020 heat wave [Earth, Atmospheric, and Planetary Sciences]
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2021-08-10 , DOI: 10.1073/pnas.2107632118
Nikolaus Froitzheim 1 , Jaroslaw Majka 2, 3 , Dmitry Zastrozhnov 4, 5
Affiliation  

Anthropogenic global warming may be accelerated by a positive feedback from the mobilization of methane from thawing Arctic permafrost. There are large uncertainties about the size of carbon stocks and the magnitude of possible methane emissions. Methane cannot only be produced from the microbial decay of organic matter within the thawing permafrost soils (microbial methane) but can also come from natural gas (thermogenic methane) trapped under or within the permafrost layer and released when it thaws. In the Taymyr Peninsula and surroundings in North Siberia, the area of the worldwide largest positive surface temperature anomaly for 2020, atmospheric methane concentrations have increased considerably during and after the 2020 heat wave. Two elongated areas of increased atmospheric methane concentration that appeared during summer coincide with two stripes of Paleozoic carbonates exposed at the southern and northern borders of the Yenisey-Khatanga Basin, a hydrocarbon-bearing sedimentary basin between the Siberian Craton to the south and the Taymyr Fold Belt to the north. Over the carbonates, soils are thin to nonexistent and wetlands are scarce. The maxima are thus unlikely to be caused by microbial methane from soils or wetlands. We suggest that gas hydrates in fractures and pockets of the carbonate rocks in the permafrost zone became unstable due to warming from the surface. This process may add unknown quantities of methane to the atmosphere in the near future.



中文翻译:

2020 年热浪期间和之后西伯利亚永久冻土区碳酸盐岩层的甲烷释放 [地球、大气和行星科学]

来自北极永久冻土融化的甲烷的流动产生的正反馈可能会加速人为全球变暖。碳储量的大小和可能的甲烷排放量有很大的不确定性。甲烷不仅可以由解冻的永久冻土层内有机物的微生物腐烂(微生物甲烷)产生,还可以来自困在永久冻土层下方或内部并在解冻时释放的天然气(产热甲烷)。在泰米尔半岛和北西伯利亚周边地区,这是 2020 年全球最大的地表温度正异常区域,在 2020 年热浪期间和之后,大气甲烷浓度显着增加。夏季出现的两个大气甲烷浓度增加的拉长区域与叶尼塞-哈坦加盆地南部和北部边界出露的两条古生代碳酸盐岩带重合带向北。在碳酸盐上,土壤稀薄甚至不存在,湿地稀少。因此,最大值不太可能是由来自土壤或湿地的微生物甲烷引起的。我们认为,由于地表变暖,多年冻土带碳酸盐岩裂缝和口袋中的天然气水合物变得不稳定。这个过程可能会在不久的将来向大气中添加未知数量的甲烷。位于南部西伯利亚克拉通和北部泰米尔褶皱带之间的含油气沉积盆地。在碳酸盐上,土壤稀薄甚至不存在,湿地稀少。因此,最大值不太可能是由来自土壤或湿地的微生物甲烷引起的。我们认为,由于地表变暖,多年冻土带碳酸盐岩裂缝和口袋中的天然气水合物变得不稳定。这个过程可能会在不久的将来向大气中添加未知数量的甲烷。位于南部西伯利亚克拉通和北部泰米尔褶皱带之间的含油气沉积盆地。在碳酸盐上,土壤稀薄甚至不存在,湿地稀少。因此,最大值不太可能是由来自土壤或湿地的微生物甲烷引起的。我们认为,由于地表变暖,多年冻土带碳酸盐岩裂缝和口袋中的天然气水合物变得不稳定。这个过程可能会在不久的将来向大气中添加未知数量的甲烷。我们认为,由于地表变暖,多年冻土带碳酸盐岩裂缝和口袋中的天然气水合物变得不稳定。这个过程可能会在不久的将来向大气中添加未知数量的甲烷。我们认为,由于地表变暖,多年冻土带碳酸盐岩裂缝和口袋中的天然气水合物变得不稳定。这个过程可能会在不久的将来向大气中添加未知数量的甲烷。

更新日期:2021-08-02
down
wechat
bug