当前位置: X-MOL 学术J. Agron. Crop Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nitrogen stress inhibits root growth by regulating cell wall and hormone changes in cotton (Gossypium hirsutum L.)
Journal of Agronomy and Crop Science ( IF 3.7 ) Pub Date : 2021-08-01 , DOI: 10.1111/jac.12538
Jing Chen 1, 2 , Zhanbiao Wang 1, 2 , Shaodong Liu 1 , Siping Zhang 1 , Changwei Ge 1 , Qian Shen 1 , Huijuan Ma 1 , Xiaomeng Zhang 1 , Helin Dong 1 , Xinhua Zhao 1 , Ruihua Liu 1 , Chaoyou Pang 1, 2
Affiliation  

Roots play an important role in the response to nitrogen stress in cotton. To better understand the molecular and physiological mechanisms underlying the adaptation of cotton roots to nitrogen stress, the responses of genes in roots to nitrogen changes were analysed by RNA sequencing (RNA-seq), and morphological and physiological indicators were measured for verification. This study revealed that lack of nitrogen stress (LN, 0 mm) and excess nitrogen stress (HN, 8 mm) inhibited root growth. Moderate nitrogen (MN, 4 mm) resulted in the largest values for root length, projected area and volume. Nitrogen stress regulated root growth via two mechanisms. Nitrogen stress decreased root growth by regulating cell wall growth via alterations in the cell wall composition and the expression of cell wall-related genes. Under LN and HN, the contents of cellular polysaccharide and glucan reached their lowest levels, whereas the contents of lignin and cellulose reached their highest levels. Lower expression of EXPA17, EXLB1 and PME3 as well as higher expression of EXLA1, WAT1, CESA1, CESA3, CAD6, COMT1, SAMS, LAC4 and NAC081 were obtained under nitrogen stress compared to MN, indicating that nitrogen stress increases lignin and cellulose synthesis and promotes root ageing. Nitrogen stress also decreased root growth by affecting the contents and regulation of salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA). Nitrogen significantly upregulated the expression of PAD4, ALD1, WRKY70, WAKL10, MYB44, FER, LHY and BHLH112 as well as significantly downregulated that of TGA6, BT1, BT2 and PYL4. The changes in the expression of these genes under nitrogen stress resulted in significant increases in the SA, JA and ABA contents in roots. Our results suggested that nitrogen stress inhibits the growth of the cotton root system by affecting cell wall growth and hormone regulation. These results contribute to our understanding of how nitrogen regulates cotton root growth at the genetic and physiological levels, and they provide a theoretical basis for the efficient utilization of nitrogen resources.

中文翻译:

氮胁迫通过调节棉花 (Gossypium hirsutum L.) 的细胞壁和激素变化来抑制根系生长

根系在棉花对氮胁迫的响应中起重要作用。为了更好地理解棉花根系适应氮胁迫的分子和生理机制,通过RNA测序(RNA-seq)分析根系基因对氮变化的响应,并测量形态学和生理学指标进行验证。该研究表明,缺乏氮胁迫 (LN, 0 m m ) 和过量氮胁迫 (HN, 8 m m ) 抑制了根系生长。中度氮 (MN, 4 m m) 导致根长、投影面积和体积的最大值。氮胁迫通过两种机制调节根系生长。氮胁迫通过改变细胞壁组成和细胞壁相关基因的表达来调节细胞壁生长,从而降低根系生长。在LN和HN下,细胞多糖和葡聚糖含量达到最低水平,而木质素和纤维素含量达到最高水平。与 MN 相比,在氮胁迫下 EXPA17、EXLB1 和 PME3 的表达较低,而 EXLA1、WAT1、CESA1、CESA3、CAD6、COMT1、SAMS、LAC4 和 NAC081 的表达较高,表明氮胁迫增加了木质素和纤维素的合成和促进根部老化。氮胁迫还通过影响水杨酸(SA)、茉莉酸(JA)和脱落酸(ABA)的含量和调节来降低根系生长。氮显着上调 PAD4、ALD1、WRKY70、WAKL10、MYB44、FER、LHY 和 BHLH112 的表达,并显着下调 TGA6、BT1、BT2 和 PYL4 的表达。这些基因在氮胁迫下表达的变化导致根中SA、JA和ABA含量显着增加。我们的结果表明,氮胁迫通过影响细胞壁生长和激素调节来抑制棉花根系的生长。这些结果有助于我们了解氮如何在遗传和生理水平上调控棉花根系生长,并为氮资源的有效利用提供理论依据。茉莉酸 (JA) 和脱落酸 (ABA)。氮显着上调 PAD4、ALD1、WRKY70、WAKL10、MYB44、FER、LHY 和 BHLH112 的表达,并显着下调 TGA6、BT1、BT2 和 PYL4 的表达。这些基因在氮胁迫下表达的变化导致根中SA、JA和ABA含量显着增加。我们的结果表明,氮胁迫通过影响细胞壁生长和激素调节来抑制棉花根系的生长。这些结果有助于我们了解氮如何在遗传和生理水平上调控棉花根系生长,并为氮资源的有效利用提供理论依据。茉莉酸 (JA) 和脱落酸 (ABA)。氮显着上调 PAD4、ALD1、WRKY70、WAKL10、MYB44、FER、LHY 和 BHLH112 的表达,并显着下调 TGA6、BT1、BT2 和 PYL4 的表达。这些基因在氮胁迫下表达的变化导致根中SA、JA和ABA含量显着增加。我们的结果表明,氮胁迫通过影响细胞壁生长和激素调节来抑制棉花根系的生长。这些结果有助于我们了解氮如何在遗传和生理水平上调控棉花根系生长,并为氮资源的有效利用提供理论依据。LHY 和 BHLH112 以及显着下调 TGA6、BT1、BT2 和 PYL4。这些基因在氮胁迫下表达的变化导致根中SA、JA和ABA含量显着增加。我们的结果表明,氮胁迫通过影响细胞壁生长和激素调节来抑制棉花根系的生长。这些结果有助于我们了解氮如何在遗传和生理水平上调控棉花根系生长,并为氮资源的有效利用提供理论依据。LHY 和 BHLH112 以及显着下调 TGA6、BT1、BT2 和 PYL4。这些基因在氮胁迫下表达的变化导致根中SA、JA和ABA含量显着增加。我们的结果表明,氮胁迫通过影响细胞壁生长和激素调节来抑制棉花根系的生长。这些结果有助于我们了解氮如何在遗传和生理水平上调控棉花根系生长,并为氮资源的有效利用提供理论依据。我们的结果表明,氮胁迫通过影响细胞壁生长和激素调节来抑制棉花根系的生长。这些结果有助于我们了解氮如何在遗传和生理水平上调控棉花根系生长,并为氮资源的有效利用提供理论依据。我们的结果表明,氮胁迫通过影响细胞壁生长和激素调节来抑制棉花根系的生长。这些结果有助于我们了解氮如何在遗传和生理水平上调控棉花根系生长,并为氮资源的有效利用提供理论依据。
更新日期:2021-08-01
down
wechat
bug