当前位置: X-MOL 学术Period. Math. Hung. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Some q-congruences arising from certain identities
Periodica Mathematica Hungarica ( IF 0.6 ) Pub Date : 2021-08-02 , DOI: 10.1007/s10998-021-00416-8
Chen Wang 1 , He-Xia Ni 2
Affiliation  

In this paper, by constructing some new q-identities, we prove some q-congruences. For example, for any odd integer \(n>1\), we show that

$$\begin{aligned} \sum _{k=0}^{n-1}\frac{(q^{-1};q^2)_k}{(q;q)_k}q^k\equiv & {} (-1)^{(n+1)/2}q^{(n^2-1)/4}-(1+q)[n]\pmod {\Phi _n(q)^2},\\ \sum _{k=0}^{n-1}\frac{(q^3;q^2)_k}{(q;q)_k}q^k\equiv & {} (-1)^{(n+1)/2}q^{(n^2-9)/4}+\frac{1+q}{q^2}[n]\pmod {\Phi _n(q)^2}, \end{aligned}$$

where the q-Pochhammer symbol is defined by \((x;q)_0=1\) and \((x;q)_k=(1-x)(1-xq)\cdots (1-xq^{k-1})\) for \(k\ge 1\), the q-integer is defined by \([n]=1+q+\cdots +q^{n-1}\) and \(\Phi _n(q)\) is the n-th cyclotomic polynomial. The q-congruences above confirm some recent conjectures of Gu and Guo.



中文翻译:

某些恒等式产生的一些 q-congruences

在本文中,通过构建一些新的q -identities,我们证明了一些q -congruences。例如,对于任何奇数\(n>1\),我们证明

$$\begin{aligned} \sum _{k=0}^{n-1}\frac{(q^{-1};q^2)_k}{(q;q)_k}q^k\ equiv & {} (-1)^{(n+1)/2}q^{(n^2-1)/4}-(1+q)[n]\pmod {\Phi _n(q)^ 2},\\ \sum _{k=0}^{n-1}\frac{(q^3;q^2)_k}{(q;q)_k}q^k\equiv & {} ( -1)^{(n+1)/2}q^{(n^2-9)/4}+\frac{1+q}{q^2}[n]\pmod {\Phi_n(q )^2}, \end{对齐}$$

其中q -Pochhammer 符号由\((x;q)_0=1\)\((x;q)_k=(1-x)(1-xq)\cdots (1-xq^{k -1})\)对于\(k\ge 1\)q -整数\([n]=1+q+\cdots +q^{n-1}\)\(\Phi _n (q)\)是第n个分圆多项式。上面的q 同余证实了顾和郭最近的一些猜想。

更新日期:2021-08-02
down
wechat
bug