当前位置: X-MOL 学术J Am Water Resour Assoc › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental Coupling of TOPMODEL with the National Water Model: Effects of Coupling Interface Complexity on Model Performance
Journal of the American Water Resources Association ( IF 2.6 ) Pub Date : 2021-08-02 , DOI: 10.1111/1752-1688.12953
Dong‐Hyun (Donny) Kim 1 , Amina Naliaka 2 , Zhipeng Zhu 3 , Fred L. Ogden 4 , Hilary K. McMillan 1
Affiliation  

The study had two objectives; (1) Substitute National Water Model’s (NWM) runoff calculation with a conceptual hydrologic model (TOPography-based hydrological MODEL [TOPMODEL]) to simplify the model structure and resolve potential drawbacks of applying NWM in headwater catchments. (2) Investigate how varying the coupling interface (location of coupling, type of fluxes used, modification of sub-models) affects model behavior of when one-way coupling the NWM’s land surface model (LSM; Noah-Multi Parameterization) with TOPMODEL using six different scenarios. The one-way coupled model outperformed NWM and noncoupled TOPMODEL. The coupling option limiting reliance on LSM’s surface and subsurface water fluxes by constraining them within the TOPMODEL structure was the most successful. Performance declined when coupling configurations relied more on LSM calculated fluxes to override TOPMODEL internal processes. Varying the coupling interface brought unexpected changes in TOPMODEL’s parameter sensitivity and water budget even while the statistical score remained similar. The coupling interface represents a source of structural uncertainty that could be identified through conventional evaluation of performance, uncertainty, and sensitivity due to the simple structure of our one-way coupling design. The study shows that the benefits of combining the strengths of land surface and conceptual hydrological models, while recognizing that structural uncertainty from coupling design needs to be acknowledged.

中文翻译:

TOPMODEL 与国家水模型的实验耦合:耦合界面复杂性对模型性能的影响

该研究有两个目标;(1) 用概念水文模型(基于地形的水文模型 [TOPMODEL])替代国家水模型 (NWM) 的径流计算,以简化模型结构并解决在源头集水区应用 NWM 的潜在缺点。(2) 研究当 NWM 的地表模型 (LSM; Noah-Multi Parameterization) 与 TOPMODEL 使用六种不同的场景。单向耦合模型优于 NWM 和非耦合 TOPMODEL。通过将 LSM 的地表和地下水通量限制在 TOPMODEL 结构内来限制对 LSM 地表和地下水通量的依赖的耦合选项是最成功的。当耦合配置更多地依赖 LSM 计算的通量来覆盖 TOPMODEL 内部流程时,性能下降。即使统计分数保持相似,改变耦合界面也会导致 TOPMODEL 的参数敏感性和水预算发生意想不到的变化。由于我们单向耦合设计的简单结构,耦合界面代表了结构不确定性的来源,可以通过对性能、不确定性和灵敏度的常规评估来识别。该研究表明,结合地表和概念水文模型的优势的好处,同时认识到耦合设计的结构不确定性需要得到承认。即使统计分数保持相似,改变耦合界面也会导致 TOPMODEL 的参数敏感性和水预算发生意想不到的变化。由于我们单向耦合设计的简单结构,耦合界面代表了结构不确定性的来源,可以通过对性能、不确定性和灵敏度的常规评估来识别。该研究表明,结合地表和概念水文模型的优势的好处,同时认识到耦合设计的结构不确定性需要得到承认。即使统计分数保持相似,改变耦合界面也会导致 TOPMODEL 的参数敏感性和水预算发生意想不到的变化。由于我们单向耦合设计的简单结构,耦合界面代表了结构不确定性的来源,可以通过对性能、不确定性和灵敏度的常规评估来识别。该研究表明,结合地表和概念水文模型的优势的好处,同时认识到耦合设计的结构不确定性需要得到承认。由于我们的单向耦合设计结构简单,灵敏度高。该研究表明,结合地表和概念水文模型的优势的好处,同时认识到耦合设计的结构不确定性需要得到承认。由于我们的单向耦合设计结构简单,灵敏度高。该研究表明,结合地表和概念水文模型的优势的好处,同时认识到耦合设计的结构不确定性需要得到承认。
更新日期:2021-08-02
down
wechat
bug