当前位置: X-MOL 学术Eng. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic modeling of MR dampers based on quasi–static model and Magic Formula hysteresis multiplier
Engineering Structures ( IF 5.5 ) Pub Date : 2021-07-31 , DOI: 10.1016/j.engstruct.2021.112855
Quoc–Duy Bui , Xian–Xu Bai , Quoc Hung Nguyen

In this research, a novel parametric dynamic model based on quasi-static (QS) model and a Magic Formula hysteresis multiplier, called QSMF model, is investigated to predict accurately and more meaningfully explain the hysteresis behavior of magnetorheological (MR) dampers. The proposed hysteresis model consists of a quasi–static (QS) component inherited from the QS model and a hysteresis multiplier improved from the Magic Formula (MF) operator [1]. The QS mechanical parameters reflect the physical nature while the MF ones characterize the practical nonlinear dynamic responses of MR dampers. This combination enables the model to be flexibly applicable for both design based on quasi-static model and dynamic modeling of MR dampers. In the MF hysteresis component, the original MF model is modified in order to describe MR dampers with high asymmetric hysteresis behavior since each hysteresis branch can be simulated separately. Besides the physical meanings of the parameters, the favorable approach is another advantage of the QSMF model as it contains no differential equation. In addition, the QS parameters can be identified independently via QS experiments. To broaden applicability, the proposed model is formulated for two general operating modes of MR dampers, i.e., shear mode and flow mode. Performances of the model under different excitation conditions are then analyzed and compared with those of the Spencer’s phenomenological model [2] and Pan’s model [3].



中文翻译:

基于准静态模型和魔术公式滞后乘数的磁流变阻尼器动态建模

在这项研究中,研究了一种基于准静态 (QS) 模型和魔术公式磁滞乘数的新型参数动态模型,称为 QSMF 模型,以准确预测并更有意义地解释磁流变 (MR) 阻尼器的磁滞行为。所提出的迟滞模型由继承自 QS 模型的准静态 (QS) 分量和从魔术公式 (MF) 算子 [1] 改进的迟滞乘数组成。QS 机械参数反映了物理性质,而 MF 则表征了 MR 阻尼器的实际非线性动态响应。这种组合使该模型能够灵活地适用于基于准静态模型的设计和 MR 阻尼器的动态建模。在 MF 磁滞分量中,修改原始 MF 模型以描述具有高非对称滞后行为的 MR 阻尼器,因为每个滞后分支都可以单独模拟。除了参数的物理意义外,有利的方法是 QSMF 模型的另一个优点,因为它不包含微分方程。此外,QS 参数可以通过 QS 实验独立识别。为了拓宽适用性,所提出的模型是针对磁流变阻尼器的两种一般操作模式制定的,即剪切模式和流动模式。然后分析模型在不同激励条件下的性能,并与 Spencer 的现象学模型 [2] 和 Pan 的模型 [3] 的性能进行比较。有利的方法是 QSMF 模型的另一个优点,因为它不包含微分方程。此外,QS 参数可以通过 QS 实验独立识别。为了拓宽适用性,所提出的模型是针对磁流变阻尼器的两种一般操作模式制定的,即剪切模式和流动模式。然后分析模型在不同激励条件下的性能,并与 Spencer 的现象学模型 [2] 和 Pan 的模型 [3] 的性能进行比较。有利的方法是 QSMF 模型的另一个优点,因为它不包含微分方程。此外,QS 参数可以通过 QS 实验独立识别。为了拓宽适用性,所提出的模型是针对磁流变阻尼器的两种一般操作模式制定的,即剪切模式和流动模式。然后分析模型在不同激励条件下的性能,并与 Spencer 的现象学模型 [2] 和 Pan 的模型 [3] 的性能进行比较。

更新日期:2021-08-01
down
wechat
bug