当前位置: X-MOL 学术Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system
Engineering with Computers Pub Date : 2021-07-31 , DOI: 10.1007/s00366-021-01454-z
Yue Liu 1 , Wanqiu Wang 2 , Tao He 3 , Zohre Moradi 4 , Myrian A. Larco Benítez 5
Affiliation  

This research presents a numerical investigation on the dynamic information of the axisymmetric sandwich annular sector plate via a higher-order continuum elasticity theory. The sandwich annular sector plate comprises multi-hybrid nanocomposite reinforced (MHCR) face sheets in the top, bottom layers, and a honeycomb core. For modeling the thermal situation and the thickness of the structure, three-kinds of thermal loading are presented. For simulating MHCR face sheets, the role of the mixture and Halpin–Tsai micromechanics model is utilized. For obtaining the governing equations and various boundary conditions, first-order shear deformation theory (FSDT), as well as Hamilton’s principle, are presented. For solving the equations and obtaining eigenvalue, and eigenvector of the current structure, discrete singular convolution method (DSCM) as a numerical one is investigated. Consequently, a parametric study is carried out to examine the impacts of honeycomb network angle, thickness to length ratio of the honeycomb, honeycomb to face sheet thickness ratio, fibers angel, outer to inner radius ratio, and weight fraction of CNTs on the dynamics of the current sandwich structure. The results show that for clamped edge and each th/lh, increasing \(\theta_{h} /\pi\) is a reason for decreasing the natural frequency of the disk. Another consequence is that the impact of temperature changes on the frequency of the disk is hardly dependent on the fiber angle. It means that the effect of temperature changes on the frequencies of the current system is more considerable at 0.2 ≤ θfπ ≤ 0.4 and 0.6 ≤ θfπ ≤ 0.8.



中文翻译:

基于离散奇异卷积法的高阶扇形环形系统振动行为建模

本研究通过高阶连续介质弹性理论对轴对称夹心环形扇形板的动态信息进行了数值研究。夹心环形扇形板包括在顶层、底层和蜂窝芯中的多杂化纳米复合材料增强 (MHCR) 面板。为了模拟热情况和结构的厚度,提出了三种热载荷。为了模拟 MHCR 面板,利用了混合物和 Halpin-Tsai 微观力学模型的作用。为了获得控制方程和各种边界条件,提出了一阶剪切变形理论(FSDT)以及哈密顿原理。为了求解方程并获得当前结构的特征值和特征向量,离散奇异卷积方法(DSCM)作为一种数值方法进行了研究。因此,进行了参数研究以检查蜂窝网络角度、蜂窝的厚度与长度之比、蜂窝与面板厚度之比、纤维角度、外半径与内半径之比以及碳纳米管的重量分数对碳纳米管动力学的影响。目前的三明治结构。结果表明,对于夹紧边缘和每个t h / l h,增加\(\theta_{h} /\pi\)是降低磁盘固有频率的原因。另一个后果是温度变化对磁盘频率的影响几乎不依赖于光纤角度。这意味着温度变化对当前系统频率的影响在 0.2 ≤ θ fπ ≤ 0.4 和 0.6 ≤ θ fπ ≤ 0.8处更为显着。

更新日期:2021-08-01
down
wechat
bug