当前位置: X-MOL 学术J. Neural Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thin-film microfabrication and intraoperative testing of ECoG and iEEG depth arrays for sense and stimulation
Journal of Neural Engineering ( IF 3.7 ) Pub Date : 2021-08-18 , DOI: 10.1088/1741-2552/ac1984
Kristin K Sellers 1, 2 , Jason E Chung 1, 2 , Jenny Zhou 3 , Michael G Triplett 3 , Heather E Dawes 1 , Razi Haque 3 , Edward F Chang 1
Affiliation  

Objective. Intracranial neural recordings and electrical stimulation are tools used in an increasing range of applications, including intraoperative clinical mapping and monitoring, therapeutic neuromodulation, and brain computer interface control and feedback. However, many of these applications suffer from a lack of spatial specificity and localization, both in terms of sensed neural signal and applied stimulation. This stems from limited manufacturing processes of commercial-off-the-shelf (COTS) arrays unable to accommodate increased channel density, higher channel count, and smaller contact size. Approach. Here, we describe a manufacturing and assembly approach using thin-film microfabrication for 32-channel high density subdural micro-electrocorticography (ECoG) surface arrays (contacts 1.2 mm diameter, 2 mm pitch) and intracranial electroencephalography (iEEG) depth arrays (contacts 0.5 mm 1.5 mm, pitch 0.8 mm 2.5 mm). Crucially, we tackle the translational hurdle and test these arrays during intraoperative studies conducted in four humans under regulatory approval. Main results. We demonstrate that the higher-density contacts provide additional unique information across the recording span compared to the density of COTS arrays which typically have electrode pitch of 8 mm or greater; 4 mm in case of specially ordered arrays. Our intracranial stimulation study results reveal that refined spatial targeting of stimulation elicits evoked potentials with differing spatial spread. Significance. Thin-film, μECoG and iEEG depth arrays offer a promising substrate for advancing a number of clinical and research applications reliant on high-resolution neural sensing and intracranial stimulation.



中文翻译:

用于感知和刺激的 ECoG 和 iEEG 深度阵列的薄膜微加工和术中测试

客观的。颅内神经记录和电刺激是用于越来越多应用的工具,包括术中临床绘图和监测、治疗性神经调节以及脑机接口控制和反馈。然而,许多这些应用在感知的神经信号和施加的刺激方面都缺乏空间特异性和定位。这是因为商用现货 (COTS) 阵列的制造工艺有限,无法适应增加的通道密度、更高的通道数和更小的触点尺寸。方法。在这里,我们描述了一种使用薄膜微加工进行 32 通道高密度硬膜下微皮层电描记术的制造和组装方法(ECoG)表面阵列(触点直径 1.2 mm,间距 2 mm)和颅内脑电图(iEEG)深度阵列(触点 0.5 mm × 1.5 mm,间距 0.8 mm × 2.5 mm)。至关重要的是,我们解决了转化障碍,并在监管部门批准的四名患者的术中研究中测试了这些阵列。主要结果。我们证明,与通常电极间距为 8 毫米或更大的 COTS 阵列的密度相比,更高密度的触点可以在整个记录范围内提供额外的独特信息;如果是特别订购的阵列,则为 4 毫米。我们的颅内刺激研究结果表明,精细的刺激空间目标会引发具有不同空间分布的诱发电位。意义。薄膜、μ ECoG 和 iEEG 深度阵列为推进许多依赖高分辨率神经传感和颅内刺激的临床和研究应用提供了有前景的基质。

更新日期:2021-08-18
down
wechat
bug