当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Voltage control of ferrimagnetic order and voltage-assisted writing of ferrimagnetic spin textures
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2021-07-29 , DOI: 10.1038/s41565-021-00940-1
Mantao Huang 1 , Muhammad Usama Hasan 1 , Konstantin Klyukin 1 , Delin Zhang 2 , Deyuan Lyu 2 , Pierluigi Gargiani 3 , Manuel Valvidares 3 , Sara Sheffels 1 , Alexandra Churikova 1 , Felix Büttner 1 , Jonas Zehner 4, 5 , Lucas Caretta 1 , Ki-Young Lee 6 , Joonyeon Chang 6, 7 , Jian-Ping Wang 2 , Karin Leistner 4, 5 , Bilge Yildiz 1, 8 , Geoffrey S D Beach 1
Affiliation  

Voltage control of magnetic order is desirable for spintronic device applications, but 180° magnetization switching is not straightforward because electric fields do not break time-reversal symmetry. Ferrimagnets are promising candidates for 180° switching owing to a multi-sublattice configuration with opposing magnetic moments of different magnitudes. In this study we used solid-state hydrogen gating to control the ferrimagnetic order in rare earth–transition metal thin films dynamically. Electric field-induced hydrogen loading/unloading in GdCo can shift the magnetic compensation temperature by more than 100 K, which enables control of the dominant magnetic sublattice. X-ray magnetic circular dichroism measurements and ab initio calculations indicate that the magnetization control originates from the weakening of antiferromagnetic exchange coupling that reduces the magnetization of Gd more than that of Co upon hydrogenation. We observed reversible, gate voltage-induced net magnetization switching and full 180° Néel vector reversal in the absence of external magnetic fields. Furthermore, we generated ferrimagnetic spin textures, such as chiral domain walls and skyrmions, in racetrack devices through hydrogen gating. With gating times as short as 50 μs and endurance of more than 10,000 cycles, our method provides a powerful means to tune ferrimagnetic spin textures and dynamics, with broad applicability in the rapidly emerging field of ferrimagnetic spintronics.



中文翻译:

亚铁磁序的电压控制和亚铁磁自旋织构的电压辅助写入

自旋电子器件应用需要磁序的电压控制,但 180° 磁化切换并不简单,因为电场不会破坏时间反转对称性。由于具有不同大小的相反磁矩的多亚晶格配置,铁磁体是 180° 转换的有希望的候选者。在这项研究中,我们使用固态氢门控来动态控制稀土-过渡金属薄膜中的亚铁磁序。GdCo 中电场诱导的氢加载/卸载可以使磁补偿温度偏移 100 K 以上,从而能够控制占主导地位的磁性亚晶格。X 射线磁圆二色性测量和从头算计算表明,磁化控制源于反铁磁交换耦合的减弱,在氢化时 Gd 的磁化强度比 Co 的降低更多。在没有外部磁场的情况下,我们观察到可逆的栅极电压感应净磁化切换和完整的 180° Néel 矢量反转。此外,我们通过氢门控在跑道设备中生成了亚铁磁自旋纹理,例如手征畴壁和斯格明子。我们的方法具有短至 50 μs 的选通时间和超过 10,000 次循环的耐久性,为调整亚铁磁自旋纹理和动力学提供了一种强大的手段,在迅速兴起的亚铁磁自旋电子学领域具有广泛的适用性。

更新日期:2021-07-29
down
wechat
bug