当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of micro-pin-fins on the bubble growth and movement of nucleate pool boiling on vertical surfaces
International Journal of Thermal Sciences ( IF 4.5 ) Pub Date : 2021-07-29 , DOI: 10.1016/j.ijthermalsci.2021.107186
Jie Zhou 1, 2 , Pengzhuo Xu 1, 2 , Baojin Qi 1, 2 , Yonghai Zhang 1, 2 , Jinjia Wei 1, 2, 3
Affiliation  

Observing bubble behaviors on the heating surface during the boiling process is a convenient and effective method to study the boiling mechanism. In recent decades, many researchers have studied the bubble growth and departure processes on the boiling surface and proposed numerous theoretical models and empirical correlations. With the increasing demand on heat dissipation of the high-power equipment, various modified surfaces with great heat transfer performance have emerged. However, it is difficult to explain bubble behaviors on the surfaces with different structures by traditional bubble dynamics on smooth surfaces. In this paper, the pool boiling experiments on vertical surfaces under subcooled and near-saturated conditions were carried out. With the help of a high-speed camera with high temporal and spatial resolution, bubble behaviors on micro-pin-finned surfaces were observed. Different bubble growth modes on different surfaces were obtained and the influence of the micro-pin-fins on the bubble growth and departure processes was learned. The effects of heat transfer from the thermal boundary layer and the micro-pin-fins on the bubble growth rate were considered. The influence of the surface tension, inertia and reaction forces on the bubble movement was analyzed. Based on these two aspects, a bubble growth-movement model was established. The pin effect on the contact radius, the inertia induced by the variation of bubble growth rate and reaction force induced by the local differential pressure are the main mechanisms of the micro-pin-fins to promote the bubble departure.



中文翻译:

微针翅对垂直表面核池沸腾气泡生长和运动的影响

观察沸腾过程中受热面上的气泡行为是研究沸腾机理的一种方便有效的方法。近几十年来,许多研究人员研究了沸腾表面气泡的生长和离开过程,并提出了许多理论模型和经验相关性。随着大功率设备对散热要求的不断提高,各种具有良好传热性能的改性表面层出不穷。然而,传统的光滑表面气泡动力学难以解释不同结构表面上的气泡行为。在本文中,进行了过冷和近饱和条件下垂直表面的池沸腾实验。借助具有高时空分辨率的高速摄像机,观察到微针翅片表面上的气泡行为。获得了不同表面上不同的气泡生长模式,并了解了微针翅对气泡生长和离开过程的影响。考虑了来自热边界层和微针翅片的传热对气泡生长速率的影响。分析了表面张力、惯性和反作用力对气泡运动的影响。基于这两方面,建立了泡沫增长-运动模型。微针翅对接触半径的影响、气泡生长速率变化引起的惯性和局部压差引起的反作用力是微针翅促进气泡离开的主要机制。获得了不同表面上不同的气泡生长模式,并了解了微针翅对气泡生长和离开过程的影响。考虑了来自热边界层和微针翅片的传热对气泡生长速率的影响。分析了表面张力、惯性和反作用力对气泡运动的影响。基于这两方面,建立了泡沫增长-运动模型。微针翅对接触半径的影响、气泡生长速率变化引起的惯性和局部压差引起的反作用力是微针翅促进气泡离开的主要机制。获得了不同表面上不同的气泡生长模式,并了解了微针翅对气泡生长和离开过程的影响。考虑了来自热边界层和微针翅片的传热对气泡生长速率的影响。分析了表面张力、惯性和反作用力对气泡运动的影响。基于这两方面,建立了泡沫增长-运动模型。微针翅对接触半径的影响、气泡生长速率变化引起的惯性和局部压差引起的反作用力是微针翅促进气泡离开的主要机制。考虑了来自热边界层和微针翅片的传热对气泡生长速率的影响。分析了表面张力、惯性和反作用力对气泡运动的影响。基于这两方面,建立了泡沫增长-运动模型。微针翅对接触半径的影响、气泡生长速率变化引起的惯性和局部压差引起的反作用力是微针翅促进气泡离开的主要机制。考虑了来自热边界层和微针翅片的传热对气泡生长速率的影响。分析了表面张力、惯性和反作用力对气泡运动的影响。基于这两方面,建立了泡沫增长-运动模型。微针翅对接触半径的影响、气泡生长速率变化引起的惯性和局部压差引起的反作用力是微针翅促进气泡离开的主要机制。

更新日期:2021-07-29
down
wechat
bug