当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data
Light: Science & Applications ( IF 20.6 ) Pub Date : 2021-07-29 , DOI: 10.1038/s41377-021-00594-7
Yijie Zhang 1, 2, 3 , Tairan Liu 1, 2, 3 , Manmohan Singh 4 , Ege Çetintaş 1, 2, 3 , Yilin Luo 1, 2, 3 , Yair Rivenson 1, 2, 3 , Kirill V Larin 4, 5 , Aydogan Ozcan 1, 2, 3, 6
Affiliation  

Optical coherence tomography (OCT) is a widely used non-invasive biomedical imaging modality that can rapidly provide volumetric images of samples. Here, we present a deep learning-based image reconstruction framework that can generate swept-source OCT (SS-OCT) images using undersampled spectral data, without any spatial aliasing artifacts. This neural network-based image reconstruction does not require any hardware changes to the optical setup and can be easily integrated with existing swept-source or spectral-domain OCT systems to reduce the amount of raw spectral data to be acquired. To show the efficacy of this framework, we trained and blindly tested a deep neural network using mouse embryo samples imaged by an SS-OCT system. Using 2-fold undersampled spectral data (i.e., 640 spectral points per A-line), the trained neural network can blindly reconstruct 512 A-lines in 0.59 ms using multiple graphics-processing units (GPUs), removing spatial aliasing artifacts due to spectral undersampling, also presenting a very good match to the images of the same samples, reconstructed using the full spectral OCT data (i.e., 1280 spectral points per A-line). We also successfully demonstrate that this framework can be further extended to process 3× undersampled spectral data per A-line, with some performance degradation in the reconstructed image quality compared to 2× spectral undersampling. Furthermore, an A-line-optimized undersampling method is presented by jointly optimizing the spectral sampling locations and the corresponding image reconstruction network, which improved the overall imaging performance using less spectral data points per A-line compared to 2× or 3× spectral undersampling results. This deep learning-enabled image reconstruction approach can be broadly used in various forms of spectral-domain OCT systems, helping to increase their imaging speed without sacrificing image resolution and signal-to-noise ratio.



中文翻译:


使用欠采样光谱数据进行扫频光学相干断层扫描中基于神经网络的图像重建



光学相干断层扫描(OCT)是一种广泛使用的非侵入性生物医学成像方式,可以快速提供样本的体积图像。在这里,我们提出了一种基于深度学习的图像重建框架,可以使用欠采样光谱数据生成扫频 OCT (SS-OCT) 图像,而不会产生任何空间混叠伪影。这种基于神经网络的图像重建不需要对光学设置进行任何硬件更改,并且可以轻松与现有的扫频或谱域 OCT 系统集成,以减少要采集的原始光谱数据量。为了展示该框架的有效性,我们使用 SS-OCT 系统成像的小鼠胚胎样本来训练和盲目测试深度神经网络。使用 2 倍欠采样光谱数据(即每条 A 线 640 个光谱点),经过训练的神经网络可以使用多个图形处理单元 (GPU) 在 0.59 毫秒内盲重建 512 条 A 线,从而消除由于光谱造成的空间混叠伪影。欠采样,也与使用全光谱 OCT 数据(即每 A 线 1280 个光谱点)重建的相同样本的图像非常匹配。我们还成功证明了该框架可以进一步扩展到处理每条 A 线 3× 欠采样光谱数据,与 2× 光谱欠采样相比,重建图像质量的性能有所下降。此外,通过联合优化光谱采样位置和相应的图像重建网络,提出了一种A线优化欠采样方法,与2×或3×光谱欠采样相比,每条A线使用更少的光谱数据点,提高了整体成像性能结果。 这种支持深度学习的图像重建方法可广泛应用于各种形式的谱域OCT系统,有助于在不牺牲图像分辨率和信噪比的情况下提高成像速度。

更新日期:2021-07-29
down
wechat
bug