当前位置: X-MOL 学术Biotechnol. Prog. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microfluidic chip-based single-cell cloning to accelerate biologic production timelines
Biotechnology Progress ( IF 2.5 ) Pub Date : 2021-07-28 , DOI: 10.1002/btpr.3192
Jonathan Diep 1 , Huong Le 1 , Kim Le 1 , Ewelina Zasadzinska 1 , Jasmine Tat 1 , Pheng Yam 1 , Ryan Zastrow 1 , Natalia Gomez 1 , Jennitte Stevens 1
Affiliation  

Cell line development (CLD) represents a critical, yet time-consuming, step in the biomanufacturing process as significant resources are devoted to the scale-up and screening of several hundreds to thousands of single-cell clones. Typically, transfected pools are fully recovered from selection and characterized for growth, productivity, and product quality to identify the best pools suitable for single-cell cloning (SCC) using limiting dilution or fluorescence-activated cell sorting (FACS). Here we report the application of the Berkeley Lights Beacon Instrument (BLI) in an early SCC process to accelerate the CLD timeline. Transfected pools were single-cell cloned when viabilities reached greater than 85% or during selection when viabilities were less than 30%. Clones isolated from these accelerated processes exhibited comparable growth, productivity, and product quality to those derived from a standard CLD process and fit into an existing manufacturing platform. With these approaches, up to a 30% reduction in the overall CLD timeline was achieved. Furthermore, early process-derived clones demonstrated equivalent long-term stability compared with standard process-derived clones over 50 population doubling levels (PDLs). Taken together, the data supported early SCC on the BLI as an attractive approach to reducing the standard CLD timeline while still identifying clones with acceptable manufacturability.

中文翻译:

基于微流控芯片的单细胞克隆可加快生物制品生产时间

细胞系开发 (CLD) 代表了生物制造过程中一个关键但耗时的步骤,因为大量资源用于放大和筛选数百到数千个单细胞克隆。通常,转染池从选择中完全恢复并表征生长、生产力和产品质量,以使用有限稀释或荧光激活细胞分选 (FACS) 确定适合单细胞克隆 (SCC) 的最佳池。在这里,我们报告了伯克利灯标仪 (BLI) 在早期 SCC 过程中的应用,以加快 CLD 时间线。当存活率达到大于 85% 或在选择期间存活率低于 30% 时,转染池被单细胞克隆。从这些加速过程中分离出的克隆表现出相当的增长,生产效率和产品质量优于源自标准 CLD 工艺并适合现有制造平台的产品。通过这些方法,整个 CLD 时间线最多可缩短 30%。此外,与超过 50 个群体倍增水平 (PDL) 的标准过程衍生克隆相比,早期过程衍生克隆表现出相当的长期稳定性。总之,这些数据支持 BLI 上的早期 SCC 作为一种有吸引力的方法,可以减少标准 CLD 时间线,同时仍然可以识别具有可接受的可制造性的克隆。与超过 50 个群体倍增水平 (PDL) 的标准过程衍生克隆相比,早期过程衍生克隆表现出相当的长期稳定性。总之,这些数据支持 BLI 上的早期 SCC 作为一种有吸引力的方法,可以减少标准 CLD 时间线,同时仍然可以识别具有可接受的可制造性的克隆。与超过 50 个群体倍增水平 (PDL) 的标准过程衍生克隆相比,早期过程衍生克隆表现出相当的长期稳定性。总之,这些数据支持 BLI 上的早期 SCC 作为一种有吸引力的方法,可以减少标准 CLD 时间线,同时仍然可以识别具有可接受的可制造性的克隆。
更新日期:2021-07-28
down
wechat
bug