当前位置: X-MOL 学术Intermetallics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micromechanical study of strengthening mechanisms for Ti65(AlCrNb)35 medium-entropy alloy
Intermetallics ( IF 4.3 ) Pub Date : 2021-07-28 , DOI: 10.1016/j.intermet.2021.107275
Chi-Hua Yu , Guan-Hua Huang , Wei-Tang Huang , Chang-Wei Huang , Yu-Chieh Lo , Zih-Jie Hung , Yu-Chin Liao , Jason Shian-Ching Jang , Hsuan-Teh Hu

Metal solutions, such as high- and medium-entropy alloys, exhibit extraordinary mechanical performance in comparison to regular alloys. In this study, we employ a crystal plasticity finite element model (CPFEM) to study the strengthening mechanisms of a new medium-entropy alloy, Ti65(AlCrNb)35. A 3D representative model is constructed by processing experimental results for Ti65(AlCrNb)35, such as average grain size, grain size distribution, and initial texture, using the open-source software Dream.3D. The constitutive law for the grains is described by the crystal plasticity and implemented in Abaqus user-defined material (UMAT). The results of uniaxial tensile tests are utilized to calibrate the required parameters in the CPFEM. Strengthening effects resulting from the grain size, strain rate, and cyclic loading for Ti65(AlCrNb)35 are investigated by performing numerical simulations based on the proposed computational framework. Numerical simulation results show that the yield strength increases with decreasing initial grain size, which agrees well with experimental observations of the Hall–Petch effect. In addition, the rate-dependent yield stress increases as the applied strain rate increases in the tensile tests. Moreover, the cyclic loading results demonstrate the isotropic hardening behaviors and the saturation of yielding strength when the maximum strain reaches 10%. Finally, we discuss the contributions of different strengthening mechanisms on the yield strength of Ti65(AlCrNb)35 under different load conditions.



中文翻译:

Ti65(AlCrNb)35中熵合金强化机制的微观力学研究

与普通合金相比,金属溶液,例如高熵和中熵合金,表现出非凡的机械性能。在本研究中,我们采用晶体塑性有限元模型 (CPFEM) 来研究新型中熵合金 Ti 65 (AlCrNb) 35的强化机制。通过处理 Ti 65 (AlCrNb) 35 的实验结果构建 3D 代表性模型,例如平均粒度、粒度分布和初始纹理,使用开源软件 Dream.3D。晶粒的本构定律由晶体塑性描述,并在 Abaqus 用户定义材料 (UMAT) 中实现。单轴拉伸试验的结果用于校准 CPFEM 中所需的参数。Ti 65 (AlCrNb) 35的晶粒尺寸、应变速率和循环载荷导致的强化效应通过基于所提出的计算框架进行数值模拟来研究。数值模拟结果表明,屈服强度随着初始晶粒尺寸的减小而增加,这与霍尔-佩奇效应的实验观察结果非常吻合。此外,随着拉伸试验中施加的应变率增加,与速率相关的屈服应力也增加。此外,循环加载结果表明,当最大应变达到 10% 时,各向同性硬化行为和屈服强度饱和。最后,我们讨论了不同强化机制对不同载荷条件下Ti 65 (AlCrNb) 35屈服强度的贡献。

更新日期:2021-07-28
down
wechat
bug