当前位置: X-MOL 学术Radio Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultra-Wideband SAR Tomography on Asteroids
Radio Science ( IF 1.6 ) Pub Date : 2021-07-27 , DOI: 10.1029/2020rs007186
Oriane Gassot 1 , Alain Herique 1 , Wenzhe Fa 2, 3 , Jun Du 2 , Wlodek Kofman 1, 4
Affiliation  

Our knowledge of the internal structure of asteroids is currently indirect and relies on inferences from remote sensing observations of surfaces. However, it is fundamental for understanding small bodies' history and for planetary defense missions. Radar observation of asteroids is the most mature technique available to characterize their inner structure, and Synthetic Aperture Radar Tomography (TomoSAR) allows 3D imaging of their interior. However, as the geometry of observation of small asteroids is complex, and TomoSAR studies have always been performed in the Earth observation geometry, its results in a small body geometry must be simulated to assess the methods' performances. We adopt here two different tomography algorithms and evaluate their performances in our geometry by assessing the resolution and the difference between the scatterer's position and its retrieved position. The first method, the Frequency Domain Back Projection (FDBP) is based on correcting the Fourier transform of the received signal by a phase function built from the geometry. While it can provide a good resolution, a bias remains in the imaged scatterer's position. Meanwhile, Compressive Sensing (CS) relies on the hypothesis that few scatterers lie in the same direction from the subsurface. Its application in the small body geometry is studied, which results in a slightly impoverished resolution but an improved localization of the scatterer.

中文翻译:

小行星超宽带SAR层析成像

我们目前对小行星内部结构的了解是间接的,并且依赖于表面遥感观测的推论。然而,它对于了解小天体的历史和行星防御任务至关重要。小行星的雷达观测是表征其内部结构的最成熟技术,合成孔径雷达断层扫描 (TomoSAR) 允许对其内部进行 3D 成像。然而,由于小行星观测的几何结构复杂,而且TomoSAR研究一直是在地球观测几何中进行的,因此必须模拟其在小天体几何中的结果来评估方法的性能。我们在这里采用两种不同的断层扫描算法,并通过评估分辨率以及散射体位置与其检索位置之间的差异来评估它们在我们的几何结构中的性能。第一种方法是频域反投影 (FDBP),它基于通过几何结构构建的相位函数来校正接收信号的傅立叶变换。虽然它可以提供良好的分辨率,但成像散射体的位置仍存在偏差。同时,压缩传感 (CS) 依赖于以下假设:很少有散射体位于与地下相同的方向。研究了它在小体几何中的应用,这导致分辨率略有下降,但散射体的定位得到改善。频域反投影 (FDBP) 是基于通过从几何构建的相位函数来校正接收信号的傅立叶变换。虽然它可以提供良好的分辨率,但成像散射体的位置仍存在偏差。同时,压缩传感 (CS) 依赖于以下假设:很少有散射体位于与地下相同的方向。研究了它在小体几何中的应用,这导致分辨率略有下降,但散射体的定位得到改善。频域反投影 (FDBP) 基于通过从几何构建的相位函数来校正接收信号的傅立叶变换。虽然它可以提供良好的分辨率,但成像散射体的位置仍存在偏差。同时,压缩传感 (CS) 依赖于以下假设:很少有散射体位于与地下相同的方向。研究了它在小体几何中的应用,这导致分辨率略有下降,但散射体的定位得到改善。压缩传感 (CS) 依赖于以下假设:很少有散射体位于与地下相同的方向。研究了它在小体几何中的应用,这导致分辨率略有下降,但散射体的定位得到改善。压缩传感 (CS) 依赖于以下假设:很少有散射体位于与地下相同的方向。研究了它在小体几何中的应用,这导致分辨率略有下降,但散射体的定位得到改善。
更新日期:2021-08-25
down
wechat
bug