当前位置: X-MOL 学术Adv. Space Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fault-tolerant control of flexible satellite with infinite-dimensional model
Advances in Space Research ( IF 2.8 ) Pub Date : 2021-07-28 , DOI: 10.1016/j.asr.2021.07.009
Leila Ashayeri 1 , Ali Doustmohammadi 1 , Farhad Fani Saberi 2
Affiliation  

Fault-tolerant control (FTC) strategy based on adaptive integral sliding mode (AISM) is proposed to stabilize a flexible satellite, subject to inertia uncertainties, external disturbances, and actuator faults. Using Hamilton’s principle, the satellite dynamics is presented as a coupled Ordinary Differential Equation (ODE) and Partial Differential Equation (PDE). The control scheme is based on the infinite-dimensional model of the flexible satellite with no discretization, so the spillover instability phenomenon is eliminated. This is the most important advantage of the proposed control scheme over the previous FTC schemes that have been used for the flexible satellite. Stabilization and vibration suppression are performed using control torque that is applied to the rigid center, and there is no need to implement in-domain actuators on panels to stabilize their vibration. First, a novel nominal controller based on the infinite-dimensional model of the satellite is designed for a healthy system. Then, an integral sliding surface, including angular velocities, internal reaction torques, and nominal control, is proposed. Finally, an AISM controller with an adaptive estimator is designed to accommodate actuator faults and other uncertainties. System stability is guaranteed for small changes in a neighborhood around the sliding surface with simultaneous vibration damping. Numerical simulations illustrate the effectiveness of the proposed control strategy.



中文翻译:

具有无限维模型的柔性卫星容错控制

提出了基于自适应积分滑模 (AISM) 的容错控制 (FTC) 策略来稳定灵活的卫星,使其受到惯性不确定性、外部干扰和执行器故障的影响。使用汉密尔顿原理,卫星动力学表现为耦合常微分方程 (ODE) 和偏微分方程 (PDE)。该控制方案基于柔性卫星的无限维模型,没有离散化,消除了溢出不稳定现象。这是所提出的控制方案相对于以前用于灵活卫星的 FTC 方案的最重要的优点。使用施加到刚性中心的控制扭矩执行稳定和振动抑制,并且无需在面板上实施域内执行器来稳定其振动。首先,为健康系统设计了一种基于卫星无限维模型的新型标称控制器。然后,提出了包括角速度、内部反作用力矩和标称控制在内的积分滑动面。最后,设计了具有自适应估计器的 AISM 控制器以适应执行器故障和其他不确定性。系统稳定性在滑动表面周围的邻域内发生微小变化时得到保证,同时减振。数值模拟说明了所提出的控制策略的有效性。提出了一个积分滑动面,包括角速度、内部反作用力矩和标称控制。最后,设计了具有自适应估计器的 AISM 控制器以适应执行器故障和其他不确定性。系统稳定性在滑动表面周围的邻域内发生微小变化时得到保证,同时减振。数值模拟说明了所提出的控制策略的有效性。提出了一个积分滑动面,包括角速度、内部反作用力矩和标称控制。最后,设计了具有自适应估计器的 AISM 控制器以适应执行器故障和其他不确定性。系统稳定性在滑动表面周围的邻域内发生微小变化时得到保证,同时减振。数值模拟说明了所提出的控制策略的有效性。

更新日期:2021-08-13
down
wechat
bug