当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Al/SiC nanocomposites with enhanced thermomechanical properties obtained from microwave plasma-treated nanopowders
Materials Science and Engineering: A ( IF 6.1 ) Pub Date : 2021-07-27 , DOI: 10.1016/j.msea.2021.141817
M.K. Kutzhanov 1 , A.T. Matveev 1 , D.G. Kvashnin 2, 3, 4 , S. Corthay 1 , A.G. Kvashnin 5 , A.S. Konopatsky 1, 6 , A.V. Bondarev 7 , N.A. Arkharova 6 , D.V. Shtansky 1
Affiliation  

Al-based composites with enhanced thermomechanical properties are in high demand. However, obtaining a uniform distribution of the strengthening phase in the metal matrix and achieving a strong metal/ceramic interface is still a great challenge. In this work, nanoAl/nanoSiC powder mixtures after high-energy ball milling were treated with Ar microwave plasma. Plasma processing was designed to remove the initial oxide film covering Al nanoparticles (NPs) and adsorbed impurities from the surface of SiC NPs, improve the wetting of SiC with Al melt, prevent SiC nanoparticle agglomeration, and ensure their uniform distribution in the metal matrix. During plasma treatment, Al/SiC composite particles were obtained, which were subsequently utilized as ready-made structural blocks with uniformly distributed reinforcing SiC NPs to obtain Al/SiC composites with 5, 10, and 30 wt% of SiC. Spark plasma sintered Al/SiC composites using plasma-treated powder mixtures showed approximately 20% higher tensile strength. The addition of 10% SiC led to an increase in hardness by 480% (145 HV), tensile strength by 70% (317 MPa) and 95% (238 MPa) at 25 °C and 500 °C, respectively, compressive strength by 135% (578 MPa), and wear resistance by 35–50%. The effect of point defects at the Al/SiC interface, such as impurity oxygen atoms and Si monovacancies, on the binding energy and temperature-dependent critical shear stress at the interface was assessed using molecular dynamics simulations with machine learning interatomic potentials. Our study demonstrated that the plasma-chemical treatment of Al/SiC powder mixtures is a promising approach for improving the thermomechanical properties of the Al/SiC composites.



中文翻译:

从微波等离子体处理的纳米粉末中获得具有增强的热机械性能的 Al/SiC 纳米复合材料

具有增强的热机械性能的铝基复合材料的需求量很大。然而,在金属基体中获得均匀分布的强化相并实现坚固的金属/陶瓷界面仍然是一个巨大的挑战。在这项工作中,纳米铝/纳米高能球磨后的 SiC 粉末混合物用 Ar 微波等离子体处理。等离子处理旨在去除覆盖 Al 纳米颗粒 (NPs) 的初始氧化膜和 SiC NPs 表面吸附的杂质,改善 SiC 与 Al 熔体的润湿,防止 SiC 纳米颗粒团聚,并确保它们在金属基体中的均匀分布。在等离子体处理过程中,获得了 Al/SiC 复合颗粒,随后将其用作具有均匀分布的增强 SiC NPs 的现成结构块,以获得具有 5、10 和 30 wt% SiC 的 Al/SiC 复合材料。使用等离子体处理的粉末混合物的火花等离子体烧结的 Al/SiC 复合材料显示出约 20% 的拉伸强度高。添加 10% 的 SiC 导致硬度增加 480% (145 HV),在 25 °C 和 500 °C 下,抗拉强度分别提高了 70% (317 MPa) 和 95% (238 MPa),抗压强度提高了 135% (578 MPa),耐磨性提高了 35-50%。使用具有机器学习原子间势的分子动力学模拟来评估 Al/SiC 界面处的点缺陷(例如杂质氧原子和 Si 单空位)对界面处结合能和温度相关临界剪切应力的影响。我们的研究表明,Al/SiC 粉末混合物的等离子体化学处理是改善 Al/SiC 复合材料热机械性能的一种有前途的方法。使用具有机器学习原子间势的分子动力学模拟来评估界面处的结合能和温度相关的临界剪切应力。我们的研究表明,Al/SiC 粉末混合物的等离子体化学处理是改善 Al/SiC 复合材料热机械性能的一种有前途的方法。使用具有机器学习原子间势的分子动力学模拟来评估界面处的结合能和温度相关的临界剪切应力。我们的研究表明,Al/SiC 粉末混合物的等离子体化学处理是改善 Al/SiC 复合材料热机械性能的一种有前途的方法。

更新日期:2021-08-02
down
wechat
bug