当前位置: X-MOL 学术J. Geophys. Res. Space Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Signal of Solar Storms Embedded in Cosmogenic Radionuclides: Detectability and Uncertainties
Journal of Geophysical Research: Space Physics ( IF 2.6 ) Pub Date : 2021-07-26 , DOI: 10.1029/2021ja029351
F. Mekhaldi 1 , F. Adolphi 2 , K. Herbst 3 , R. Muscheler 1
Affiliation  

The threat that solar storms pose to our ever-modernizing society has gathered significant interest in the recent past. This is partly due to the discoveries of large peaks in the content of cosmogenic radionuclides such as radiocarbon (14C) in tree rings and beryllium-10 (10Be) and chlorine-36 (36Cl) in ice cores that were linked to extreme solar storms dated to the past millennia. To better assess the threat that they represent, we need to better quantify the relationship between their energy spectrum and their magnitude with respect to the content of the radionuclides that we measure in environmental archives such as ice cores. Here, we model the global production rate that the 59 largest particle storms coming from the Sun have induced for 10Be, 14C, and 36Cl during the past 70 years. We also consider the deposition flux in 10Be and 36Cl over the high latitudes where all Greenland ice cores are located. Our analysis shows that it is unlikely that any recent solar particle event can be detected in 10Be from ice cores. By relating these values to empirical data from ice cores, we are able to quantify different detection limits and uncertainties for 10Be and 36Cl. Due to different sensitivities to solar energetic particles, we assess that 10Be may only be suitable to detect a limited number of extreme solar storms, while 36Cl is suitable to detect any extreme particle event. This implies that the occurrence-rate estimates of extreme solar storms, based mainly on 14C and 10Be, relate to a small population of potential events.

中文翻译:

嵌入宇宙放射性核素中的太阳风暴信号:可探测性和不确定性

最近,太阳风暴对我们不断现代化的社会构成的威胁引起了人们的极大兴趣。这部分是由于发现了宇宙放射性核素含量的大峰值,如树木年轮中的放射性碳 ( 14 C) 和冰芯中的铍 10 ( 10 Be) 和氯 36 ( 36 Cl),这些都与极端情况有关。太阳风暴可以追溯到过去几千年。为了更好地评估它们所代表的威胁,我们需要根据我们在冰芯等环境档案中测量的放射性核素含量,更好地量化它们的能谱与其强度之间的关系。在这里,我们模拟了来自太阳的 59 次最大粒子风暴在10年内诱发的全球生产率。在过去的 70 年中,Be、14 C 和36 Cl。我们还考虑了所有格陵兰冰芯所在的高纬度地区10 Be 和36 Cl的沉积通量。我们的分析表明,不太可能在来自冰芯的10 Be 中检测到任何最近的太阳粒子事件。通过将这些值与来自冰芯的经验数据相关联,我们能够量化10 Be 和36 Cl 的不同检测限和不确定性。由于对太阳高能粒子的敏感性不同,我们评估10 Be 可能仅适用于检测数量有限的极端太阳风暴,而36 BeCl 适用于检测任何极端粒子事件。这意味着主要基于14 C 和10 Be的极端太阳风暴发生率估计与少量潜在事件有关。
更新日期:2021-08-05
down
wechat
bug